Kolmion merkilliset pisteet

testwikistä
Siirry navigaatioon Siirry hakuun
Osa kolmion merkillisistä pisteistä asettuu Eulerin suoralle. Kuvassa näkyvät tunnetuimmat merkilliset pisteet: kolmion painopiste, ortokeskus, yhdeksän pisteen ympyrän keskipiste ja kolmion keskinormaalien leikkauspiste.

Kolmion merkillisellä pisteellä tarkoitetaan geometriassa yleensä leikkauspistettä, jossa kolmioon liittyvät kolme samalla tavalla muodostettua suoraa tai janaa leikkaavat toisensa. Jo antiikin Kreikassa tiedettiin kolmion kulmanpuolittajien, korkeusjanojen, keskinormaalien ja keskijanojen muodostavan tällaisia pisteitä, koska kolmion muoto ei vaikuttanut janojen leikkautumiseen eli konkurrenssiin. Myöhemmin merkillisiin pisteisiin löytyi uusia ja varsin mutkikkaitakin tapauksia, joissa niissäkään kolmion muoto ei vaikuta pisteen syntymiseen.

Mikä tahansa kolmion lähellä oleva piste ei ole merkillinen piste. Se tulee voida määrittää sellaisen geometrisen toimenpiteen avulla, joka on mahdollista suorittaa kolmen eri kulman tai sivun funktiona muihin kolmion osiin nähden. Esimerkiksi kolmion painopiste on tämän perusteella merkillinen piste, koska se syntyy leikkauspisteenä jokaisesta kolmion kärjestä vedetystä, vastaisen sivun keskipisteeseen kulkevasta janasta. Toimenpiteen tulee olla myös symmetrinen, eli painopistettä määrittävän keskijanan tulee olla sama vedettiinpä se kärjestä A janalle BC tai kärjestä A janalle CB. Toimenpiteen tulee vielä lopuksi olla homogeeninen, eli yhdenmuotoisten kolmioiden merkilliset pisteet sijaitsevat samassa suhteellisessa paikassa.[1]

Kimberlingin luettelo

Kimberlingin piste on yleisnimitys Clark Kimberlingin tutkimista ja luettelemista kolmion merkillisistä pisteistä. Osa pisteistä, neljä yllä lueteltua tapausta, tunnettiin jo antiikin Kreikassa, mutta osa on keksitty myöhemmin ja varsin monet vasta nykypäivinä. Julkaistussa luettelossa on yli 5 000 merkillistä pistettä.[2] Luettelon pisteet on indeksoitu ja niitä voidaan merkitä lyhyesti joko Xi [3] tai X(i) [4].

Kolmion merkilliset pisteet sijaitsevat tasolla suhteessa kolmion muotoihin, joten niiden paikka pitää ilmoittaa suhteellisilla koordinaateilla. Sijainti ilmoitetaan yleisesti käyttäen joko kolmion mittoja hyödyntäviä todellisia koordinaatteja, trilineaarisia koordinaatteja tai barysentrisiä koordinaatteja. Karteesisia eli suorakulmaisia koordinaatteja on tasogeometriassa kaksi, mutta trilineaarisia ja barysentrisiä koordinaatteja aina kolme. Merkillisillä pisteillä on keskinäisiä yhteyksiä, mikä tekee niistä matemaattisesti mielenkiintoisia tutkimuskohteita.[5][4]

Merkillisiä pisteitä

Viimeistään antiikin aikana havaittiin, että muodostaan riippumatta kolmiolla on neljä erityisen säännön mukaan muodostettavaa konkurrenttia janaa tai suoraa: kulmanpuolittaja, keskijana, keskinormaali ja korkeusjana. Näiden viivojen leikkauspisteitä kutsuttiin kolmion merkillisiksi pisteiksi.

Antiikin merkilliset pisteet

Kolmion merkillisistä pisteistä neljä tunnettiin niinkin varhain kuin Eukleideen teoksesta Alkeet. Nämä pisteet ovat:

Tasasivuisella kolmiolla nämä kaikki neljä merkillistä pistettä yhtyvät samaksi pisteeksi.

Klassiset merkilliset pisteet

Klassisiin merkillisiin pisteisiin luetaan antiikin pisteiden lisäksi vielä seuraavat pisteet, jotka huomattiin paljon myöhemmin:[12]

Lähteet

Viitteet

Malline:Viitteet

Aiheesta muualla

  1. Viittausvirhe: Virheellinen <ref>-elementti; viitettä trilin1213 ei löytynyt
  2. Viittausvirhe: Virheellinen <ref>-elementti; viitettä trilin2 ei löytynyt
  3. Viittausvirhe: Virheellinen <ref>-elementti; viitettä KimberlingCenter ei löytynyt
  4. 4,0 4,1 Viittausvirhe: Virheellinen <ref>-elementti; viitettä ck_euler ei löytynyt
  5. Viittausvirhe: Virheellinen <ref>-elementti; viitettä trilini ei löytynyt
  6. Viittausvirhe: Virheellinen <ref>-elementti; viitettä Incenter ei löytynyt
  7. Viittausvirhe: Virheellinen <ref>-elementti; viitettä TriangleCentroid ei löytynyt
  8. Viittausvirhe: Virheellinen <ref>-elementti; viitettä Circumcenter ei löytynyt
  9. Viittausvirhe: Virheellinen <ref>-elementti; viitettä trilin711 ei löytynyt
  10. Viittausvirhe: Virheellinen <ref>-elementti; viitettä Orthocenter ei löytynyt
  11. Viittausvirhe: Virheellinen <ref>-elementti; viitettä ck_triangle ei löytynyt
  12. Viittausvirhe: Virheellinen <ref>-elementti; viitettä ck_klassictriangle ei löytynyt
  13. Viittausvirhe: Virheellinen <ref>-elementti; viitettä NinePointCenter ei löytynyt
  14. Viittausvirhe: Virheellinen <ref>-elementti; viitettä SymmedianPoint ei löytynyt
  15. Viittausvirhe: Virheellinen <ref>-elementti; viitettä GergonnePoint ei löytynyt
  16. Viittausvirhe: Virheellinen <ref>-elementti; viitettä NagelPoint ei löytynyt
  17. Viittausvirhe: Virheellinen <ref>-elementti; viitettä Mittenpunkt ei löytynyt
  18. Viittausvirhe: Virheellinen <ref>-elementti; viitettä SpiekerCenter ei löytynyt
  19. Viittausvirhe: Virheellinen <ref>-elementti; viitettä FeuerbachPoint ei löytynyt
  20. Viittausvirhe: Virheellinen <ref>-elementti; viitettä FirstFermatPoint ei löytynyt
  21. Viittausvirhe: Virheellinen <ref>-elementti; viitettä SecondFermatPoint ei löytynyt
  22. Viittausvirhe: Virheellinen <ref>-elementti; viitettä FirstIsodynamicPoint ei löytynyt
  23. Viittausvirhe: Virheellinen <ref>-elementti; viitettä SecondIsodynamicPoint ei löytynyt
  24. Viittausvirhe: Virheellinen <ref>-elementti; viitettä FirstNapoleonPoint ei löytynyt
  25. Viittausvirhe: Virheellinen <ref>-elementti; viitettä SecondNapoleonPoint ei löytynyt
  26. Viittausvirhe: Virheellinen <ref>-elementti; viitettä SchifflerPoint ei löytynyt
  27. Viittausvirhe: Virheellinen <ref>-elementti; viitettä ck_steiner ei löytynyt