Algebrallinen geometria

testwikistä
Siirry navigaatioon Siirry hakuun

Malline:Lähteetön Algebrallinen geometria on matematiikan osa-alue, joka tutkii geometriaa abstraktin algebran avulla. Algebrallisen geometrian voidaan ajatella olevan algebrallisten yhtälöryhmien ratkaisujoukon tutkimista. Kun yhtälöissä on useampi kuin yksi tuntematon, yhtälön geometrinen luonne helpottaa usein ilmiön ymmärtämistä. Voidaan sanoa, että algebrallinen geometria alkaa siitä, kun yhtälön ratkaisu jää sivuseikaksi ja ratkaisujen muodostama joukko on yhtä tärkeä kuin yhden yksittäisen ratkaisun tunteminen. Tämä johtaa siihen, että aloitteleva algebrallisen geometrian opiskelija kohtaa monia uusia tekniikoita käsitellä yhtälöitä alkaessaan opiskella algebrallista geometriaa.

Polynomien yhteiset nollakohdat

Klassisessa algebrallisessa geometriassa päämielenkiinto kohdistuu polynomien yhteisten nollakohtien tutkimiseen. Esimerkiksi jos taso leikkaa palloa, tuloksena syntyy ympyrä.

Affiinit varistot

Olkoon annettu kunta k. Klassisessa algebrallisessa geometriassa kunnaksi oletetaan C, kompleksiluvut, mutta monet tulokset ovat voimassa pelkästään olettamalla että k on algebrallisesti suljettu. Määritellään 𝔸kn, affiini n-avaruus kunnassa k, olemaan kn. Tämän merkintätavan tarkoituksena on unohtaa että kn on vektoriavaruus. Siten 𝔸kn on, ainakin hetken aikaa, pelkästään kokoelma pisteitä. Siten voidaan pudottaa k 𝔸kn:sta ja kirjoittaa pelkästään 𝔸n.

Sanotaan että funktio

f:𝔸n𝔸1

on säännöllinen, jos se voidaan kirjoittaa polynomiksi. Tämä tarkoittaa sitä, että on olemassa polynomi p joukossa

k[x1,...,xn]

siten että jokaiselle pisteelle

(t1,...,tn) 𝔸n

on voimassa

f(t1,...,tn) = p(t1,...,tn).

Säännölliset funktiot affiinissa n-avaruudessa on siten täsmälleen samat kuin n:n muuttujan polynomit k:ssa. Merkitään kaikkien säännöllisien funktioiden joukkoa 𝔸n:ssä k[𝔸n].

Sanomme polynomin häviävän tietyssä pisteessä, jos tässä pisteessä on funktion arvo nolla. Olkoon S joukko polynomeja k[𝔸n]:ssä. Joukon S häviämisjoukko, V(S), muodostuu niistä pisteistä 𝔸n:ssä, joissa jokainen S:n polynomi häviää. Toisin sanoen

V(S) = {(t1,...,tn) | kaikilla pS, p(t1,...,tn) = 0}.

Osajoukko 𝔸n joka on V(S) jollakin S, on nimeltään algebrallinen joukko. V tulee nimestä varisto (tietyn tyyppinen algebrallinen joukko).

Jos on annettu joukon 𝔸n osajoukko V siten että V on varisto, voidaan aina määrittää polynomijoukko joka virittää V:n. Jos V on mikä tahansa 𝔸n:n osajoukko, määritellään I(V) olemaan se joukko jossa häviävien polynomien joukko sisältää V:n. I tulee sanasta ideaali: Jos polynomit f ja g molemmat häviävät V:ssä, tällöin myös f+g häviää V:ssä ja jos h on mikä tahansa polynomi, tällöin myös hf häviää V:ssä, joten I(V) on aina k[𝔸n]:n ideaali.

Nyt herää kaksi tärkeää kysymystä: On annettu joukon 𝔸n osajoukko V. Milloin on

V = V(I(V))?

On annettu joukko S polynomeja, milloin on

S = I(V(S))?

Vastaus ensimmäiseen kysymykseen saadaan Zariskin topologian avulla, topologia 𝔸n:ssa joka kertoo suoraan k[𝔸n]:n algebrallisen rakenteen. Tällöin V = V(I(V)) jos ja vain jos V on Zariski-suljettu joukko. Toiseen kysymykseen vastauksen antaa Hilbertin Nullstellensatz. Lauseen erään muodon mukaan I(V(S)) on S:stä viritetyn ideaalin alkuradikaali. Toisin sanoen on olemassa Galois yhteys, joka yhdistää kaksi sulkeumaoperaattoria. Nämä voidaan samaistaa ja ovat luonnollisesti teorian keskeinen käsite. Erilaisista syistä johtuen emme aina halua tutkia annetun algebrallisen joukon V koko ideaalia. Hilbertin kantalauseesta seuraa, että k[𝔸n]:n ideaalit ovat aina äärellisesti viritettyjä.

Algebrallisen joukon sanotaan olevan jaoton, jos sitä ei voida kirjoittaa kahden pienemmän algebrallisen joukon yhdisteeksi. Jaotonta algebrallista joukkoa kutsutaan myös varistoksi. Osoittautuu, että algebrallinen joukko on varisto jos ja vain jos joukon polynomit virittävät polynomirenkaan alkuideaalin.

Säännölliset funktiot

Kuten jatkuvat funktiot ovat topologiassa usein käytettyjä kuvauksia topologisten avaruuksien välillä ja sileät funktiot ovat vastaavasti kuvauksia differentioituvien monistojen välillä, on olemassa myös algebrallisten joukkojen välillä funktioita, säännöllisiä funktioita. Algebrallisen joukon V𝔸n säännöllinen funktio määritellään joukon 𝔸n rajoittumaksi V:hen. Voi näyttää epäluonnolliselta rajoitukselta vaatia säännöllinen funktion määrittelyjoukoksi myös alkuperäisen funktion määrittelyjoukkoa laajempi avaruus, mutta tilanne on analoginen normaalien topologisten avaruuksien kohdalla, missä Tietzen jatkolause takaa että suljetun joukon jatkuva funktio voidaan aina jatkaa jatkuvaksi funktioksi ympäröivään avaruuteen.

Kuten säännöllisen funktio affiinissa avaruudessa, säännölliset funktiot V:ssä muodostavat renkaan, jota merkitään k[V]. Tämä rengas on nimeltään V:n koordinaattirengas.

Koska V:n säännölliset funktiot saadaan 𝔸n:n säännöllisistä funktioista, niillä on yhteys niiden koordinaattirenkaaseen. Erityisesti, saadakseen funktion k[V]:ssä otamme funktion k[𝔸n]:sta ja sanomme että kaksi funktiota ovat samat jos ne ovat samat V:ssä. Tämä tarkoittaa että funktioiden erotus häviää V:ssä. Tästä nähdään, että k[V] on tekijäjoukko k[𝔸n]/I(V).

Affiinien varistojen kategoria

Käyttämällä säännöllisiä funktioita affiinilta varistolta 𝔸1:lle, voidaan määritellä säännöllisiä funktioita affiinilta varistolta toiselle. Määritellään ensiksi säännöllinen funktio varistolta affiiniin avaruuteen: Olkoon V varisto 𝔸n:ssa. Valitaan m säännöllistä funktiota V:stä ja nimetään ne f1,...,fm. Määritellään säännöllinen funktio f V:ltä 𝔸m:ään asettamalla f(t1,...,tn)=(f1,...,fm). Toisin sanoen, jokainen fi määrää yhden koordinaatin f:n maalissa.

Jos V' on varisto joka sisältyy 𝔸m:han, sanomme että f on säännöllinen funktio V:ltä V':uun, jos f:n maalijoukko sisältyy V':uun.

Tämän ominaisuuden perusteella kaikki affiinit varistot muodostavat kategorian, missä objektit ovat affiineja varistoja ja morfismit säännöllisiä kuvauksia. Seuraava lause karakterisoi affiinien varistojen kategorian:

Affiinien varistojen kategoria on duaalinen kategoria äärellisesti viritettyjen redusoitujen k-algebrojen ja niiden homomorfismien kategorialle.

Projektiivinen avaruus

Tarkastellaan varistoa V(y=x2). Sen kuvaaja on paraabeli. Kun x kasvaa, suoran, joka kulkee origon ja pisteen (x,x2) kautta, kulmakerroin kasvaa. Kun x vähenee, saman suoran kulmakerron pienenee ja pienenee.

Verrataan tätä varistoon V(y=x3). Tämä on kolmannen asteen yhtälö. Kun x kasvaa, origon ja pisteen (x,x3) kautta kulkevan suoran kulmakerroin kasvaa rajatta kuten ennenkin. Mutta toisin kuin ennen, kun x pienenee rajatta, kulmakerroin kasvaa edelleen rajatta. Siten varistojen V(y=x2) ja V(y=x3) käyttäytyminen äärettömyydessä on erilaista. Affiinissa avaruudessa on kuitenkin vaikeaa määritellä käsite "äärettömyydessä".

Ratkaistakseen ongelman on työskenneltävä niin sanotussa projektiivisessa avaruudessa. Projektiivisen avaruuden ominaisuudet ovat samat kuin kompaktin Hausdorffin avaruuden. Projektiivinen avaruus saadaan siis lisäämällä avaruuteen äärettömyyspisteitä ja määrittelemällä äärettömille topologiset ympäristöt. Tätä kutsutaan prosessia topologiassa nimellä Aleksandrovin kompaktisointi. Varistojen käyttäytyminen äärettömyydessä antaa lisätietoa varistoista. Osoittautuu, että V(y=x3):lla on singulariteetti yhdessä lisätyssä pisteessä, mutta V(y=x2) on sileä varisto.

Vaikka projektiivinen geometria löydettiin alun perin synteettisen geometrian kautta, homogeeninen koordinaatisto mahdollisti algebrallisten tekniikoiden käytön algebrallisen geometrian tutkimisessa. Edelleen projektiivisten tekniikoiden käyttö yksinkertaisti ja tiukensi monia algebrallisen geometrian tuloksia. Esimerkiksi tunnettu Bezout'n lause kahden variston leikkauspisteiden lukumäärästä voidaan esittää tiukimmassa muodossaan ainoastaan projektiivisessa avaruudessa. Tämän takia projektiivinen avaruus näyttelee keskeistä roolia algebrallisessa geometriassa.

Kirjallisuutta