Hyperbolinen sektori

Hyperbolinen sektori on karteesisen tason alue, jota rajoittavat origosta pisteisiin (a, 1/a) ja ''b, 1/b) piirretyt janat sekä hyperbeli xy = 1 tai muu sen kanssa yhdenmuotoinen hyperbeli, jonka asymptootit leikkaavat toisensa kohtisuorasti origossa (esimerkiksi yksikköhyperbeli . Hyperbolisen sanotaan olevan perusasemassaan, kun sitä rajoittavat hyperbeli xy=1 ja kun a=1 ja b > 1.
Hyperbolisiin sektoreihin perustuvat hyperboliset funktiot.
Pinta-ala

Perusasemassa olevan hyperbolisen sektorin pinta-ala on b:n luonnollinen logaritmi ln b.
Tämä voidaan todistaa integroimalla funktio 1/x välin [1, b] yli, lisäämällä integraaliin kolmion {(0,0), (1,0, (1,1)} pinta-ala ja vähentämällä kolmion {(0,0, (b,0), b,1/b)} pinta-ala.[1]
Perusasemassa oleva hyperbolinen sektori vastaa origoon asetettua hyperbolista kulmaa, jonka suuruus määritellään vastaavan hyperbolisen sektorin pinta-alana.
Hyperbolinen kolmio

Perusasemassa olevaa hyperboliseen sektoriin liittyy hyperbolinen kolmio. Se on suorakulmainen kolmio, jonka yksi kärki on origossa, toinen kateetti suoralla y = x ja kolmas kärki hyperbelillä
jolloin sen hypotenuusa on orgiosta hyperbelillä olevaan pisteeseen (x,y) johtava jana. Tämän kolmion kanta eli suoralla y=x olevan kateetin pituus on
ja sen korkeus
missä u on kolmioon liittyvä hyperbolinen kulma.
Trigonometristen ja hyperbolisten funktioiden välistä analogiaa käsitteli Augustus De Morgan teoksessaan Trigonometry and Double Algebra vuodelta 1849.[2] William Burnside käytti hyperbolisia kolmioita projisoidessaan hyperbelillä xy olevan pisteen päädiagonaalille artikkelissaan "Note on the addition theorem for hyperbolic functions".[3]
Hyperbolinen logaritmi

Malline:Pääartikkeli Tunnetusti funktiolla f(x) = xp on algebrallinen integraalifunktio
- ,
paitsi tapauksessa p = -1, joka vastaa hyperbelin rajoittaman alueen neliöimistä. Paraabelin rajoittaman alueen pinta-alan osasi määrittää jo Arkhimedes 200-luvulla eKr. tutkielmassaan Paraabelin neliöimisestä (Malline:K-el)[4], mutta hyperbelin rajoittamien alueiden pinta-alan onnistui määrittämään vasta Gregoire de Saint-Vincent vuonna 1647 keksittyään uuden funktion, luonnollisen logaritmin, jota hän nimitti hyperboliseksi logaritmiksi, koska siihen päädyttiin määritettäessä hyperbelin alle jäävän alueen pinta-ala.[5]
Ennen kuin Leonhard Euler vuonna 1748 julkaisi tutkielmansa Johdatus äärettömän analyysiin (Malline:K-la), luonnollinen logaritmi tunnettiin lähinnä vain hyperbolisen sektorin pinta-alaan liittyvänä funktiona. Euler muutti tilanteen ottamalla käyttöön sen tyyppiset transkendenttiset funktiot kuin 10x. Euler määritteli Neperin luvun e siksi b:n arvoksi, jolla x-akselin, suorien y=1 ja y=b sekä hyperberlin y=1/x välisen alueen pinta-ala on 1. Tämän jälkeen luonnollinen logaritmi voitiin tunnistaa transkendenttisen funktion ex käänteisfunktioksi.[6]
Yhteys hyperboliseen geometriaan
Kun Felix Klein vuonna 1928 kirjoitti epäeuklidista geometriaa käsittelevän teoksensa, hän muodosti aiheelle perustan viittamaalla projektiiviseen geometriaan. Muodostaakseen suoralle hyperbolisen mitan hän huomautti, että hyperbolisen sektorin pinta-ala tarjosi sille havainnollisen mallin.[7]
Hyperbolisia sektoreita voidaan piirtää myös liittyen hyperbeliin . Näiden hyperbolisten sektoreiden pinta-alojen avulla on eräissä geometrian oppikirjoissa määritelty hyperbolinen etäisyys.[8]