Diskriminantti

testwikistä
Siirry navigaatioon Siirry hakuun

Polynomin p(x)=anxn+...+a1x+a0, missä kertoimet a1,a2,...,an kuuluvat annettuun kuntaan K, diskriminantti on (2n − 1)×(2n − 1) matriisin

(anan1an2a0000anan1an2a000 00 0anan1an2a0nan(n1)an1(n2)an2 1a1000nan(n1)an1(n2)an2 1a100 000nan(n1)an1(n2)an2 a1) determinantti.

Toisen asteen yhtälö

Tunnetuin erikoistapaus diskriminantista on toisen asteen polynomin p(x) = ax2+bx+c diskriminantti D = b²−4ac. Toisen asteen polynomin tapauksessa voidaan diskriminantin arvosta päätellä reaalikertoimisen yhtälön p(x) = 0 reaalisten ratkaisujen eli reaalijuurien lukumäärä[1]:

  • Jos D>0, niin yhtälöllä on kaksi erisuurta reaaliratkaisua.
  • Jos D<0, niin yhtälöllä ei ole yhtään reaaliratkaisua.
  • Jos D=0, niin yhtälöllä on yksi reaaliratkaisu, ns. kaksoisjuuri.

Diskriminantin avulla ei saada selville yhtälön juuria vaan reaalisten juurien lukumäärä. Diskriminantti on nopeampi tapa laskea yhtälön reaalijuurien määrä kuin yhtälön ratkaiseminen toisen asteen yhtälön ratkaisukaavalla.

Toisen asteen polynomin diskriminantin D = b²−4ac avulla voidaan kirjoittaa lauseke myös polynomin kuvaajan nollakohtien välisen osan ja x-akselin rajaaman alueen pinta-alalle A:

A=D3/26a2.

Lähteet

Malline:Viitteet