Karakteristinen polynomi
Karakteristinen polynomi on neliömatriiseihin liittyvä käsite. Tämä polynomi sisältää useita matriisiin liittyviä ominaisuuksia, huomattavampina matriisin ominaisarvot, determinantti sekä jälki.
Lähtökohta
Annetulle neliömatriisille on löydettävä polynomi, jonka juuret ovat :n ominaisarvot.
Päädiagonaalimatriisi
Päädiagonaalimatriisille eli lävistäjämatriisille karakteristinen polynomi on helppo määritellä: jos lävistäjäalkiot ovat muotoa , missä , niin karakteristinen polynomi on muotoa
Tämä siksi, että lävistäjäalkiot ovat matriisin ominaisarvot.
Yleinen tapaus
Yleisen -neliömatriisin tapauksessa voidaan menetellä seuraavasti. Kerroinkunnan alkio (luku) on matriisin ominaisarvo, jos ja vain jos on olemassa sellainen vektori (ominaisvektori) , että
- ,
eli
- ,
missä on yksikkömatriisi. Koska vektori on nollasta eroava, on matriisin oltava singulaarinen, jolloin sen determinantti on . Tämän determinantista saadun polynomin juuret ovat :n ominaisarvoja.
Ominaisarvot löydetään siis polynomiyhtälön
ratkaisuina.
Koska funktio on polynomifunktio, on vaadittu karakteristinen polynomi löydetty.
Formaali määritelmä
Olkoon kunta ja -kertoiminen -matriisi. Matriisin karakteristinen polynomi on määritelmän mukaan
- ,
missä on yksikkömatriisi. Tämä on todellakin polynomi, sillä determinantti on määritelty summaksi matriisin alkioiden tuloista. Toisinaan määritellään karakteristinen polynomi kaavalla . Tästä saadaan alkuperäinen määritelmä kertomalla polynomi luvulla .
Esimerkki
Lasketaan matriisin
karakteristinen polynomi. Tällöin on laskettava seuraavan matriisin determinantti:
Tämä determinantti on
Tämä on :n karakteristinen polynomi, missä on matriisin ominaisarvo.