Van Aubelin lause

testwikistä
Siirry navigaatioon Siirry hakuun
van Aubelin konstruktio toimii nelikulmion ollessa yksinkertainen tai kompleksinen.

van Aubelin lause esittää geometriassa nelikulmioiden sivuille piirrettävien neliöiden erään ominaisuuden. Valitaan mikä tahansa nelikulmio ja sen jokaiselle sivulle piirretään neliö, jonka sivun pituus on nelikulmion sivun pituinen ja joka yhtyy yhden sivunsa kanssa nelikulmion sivuun. Tällaisten neliöiden keskipisteet voidaan yhdistää toisiinsa kuudella janalla. Reunimmaista janoista muodostuvat nelikulmion sivut (joskus van Aubelin nelikulmio) ja kahdesta muusta janasta sen lävistäjät. Osoittautuu, että mainitut lävistäjät ovat yhtä pitkiä ja että ne leikkaavat toisensa kohtisuoraan.[1][2]

Nelikulmion ei tarvitse tätä varten olla konveksi, vaan se voi olla jopa kompleksinen eli itseään leikkaava, jotta edellä esitetyt ominaisuudet säilyvät. Eräs muunnelma sallii nelikulmion yhden sivun kutistamisen jopa pisteeksi ja silti lause pätee. Toinen yksinkertainen muunnelma on piirtää edellä mainitut neliöt nelikulmion sivujen toiselle puolelle eli sisäänpäin. Myös tällöin neliöiden keskipisteiden lävistäjät ovat saman pituisia ja kohtisuorassa toisiinsa nähden.[2]

Muita ominaisuuksia

Vaikka van Aubelin lauseen todistuksen alkuperäisessä esityksessä ei todistettu muuta, sisältyy tähän konstruktioon paljon muitakin ominaisuuksia. Esimerkiksi neliöiden keskipisteistä syntynyt nelikulmio on ortodiagonaalinen nelikulmio.[1]

Neliöiden keskipisteiden muodostaman nelikulmion lävistäjien keskipisteet eivät useinkaan osu yhteen. Silloin nämä keskipisteet voidaan yhdistää janalla, jonka keskipiste osuu yhteen alkuperäisen nelikulmion kärkien painopisteen kanssa. Tämä tapahtuu myös silloin, kun neliöt on piirretty nelikulmion sisäpuolelle.[2]

Muunnelmia ja laajennuksia

Monet muunnelmat van Aubelin esittämästä konstruktiosta korvaavat sivuille piirrettävät neliöt kolmioilla, neljäkkäillä, suorakulmioilla, yleisillä suunnikkailla, tasakylkisillä puolisuunnikkailla ja yleisillä puolisuunnikkailla. Myös näillä keskipisteiden väliset lävistäjät leikkaavat samanpituisina toisensa kohtisuoraan.[3][4]

van Aubelin toinen lause

Hänen nimissään on toinenkin geometrinen lause, joka liittyy ceviaanikolmioihin. Jos merkitään kolmion ABC ceviaanikolmion A'B'C' ceviaanipistettä kirjaimella P, voidaan kirjoittaa janojen pituuksilla[1]

APPA=ABBC+ACCB

Katso myös

Kirjallisuutta

Lähteet

Viitteet

Malline:Viitteet

Aiheesta muualla

  1. 1,0 1,1 1,2 Viittausvirhe: Virheellinen <ref>-elementti; viitettä vanA ei löytynyt
  2. 2,0 2,1 2,2 Viittausvirhe: Virheellinen <ref>-elementti; viitettä w ei löytynyt
  3. Viittausvirhe: Virheellinen <ref>-elementti; viitettä s ei löytynyt
  4. Viittausvirhe: Virheellinen <ref>-elementti; viitettä n ei löytynyt