Symmetrinen matriisi

testwikistä
Siirry navigaatioon Siirry hakuun

Symmetrinen matriisi on matriisi, joka on itsensä transpoosi.[1] Siten A on symmetrinen jos

AT=A,

jolloin A:n on tietysti oltava neliömatriisi. Symmetrisen matriisin alkiot sijaitsevat symmetrisesti päädiagonaalin suhteen. Jos matriisin alkioita merkitään A = (aij), on

aij=aji

kaikilla indekseillä i ja j. Esimerkiksi seuraava 3×3-matriisi on symmetrinen:

[123245356]

Kaikki lävistäjämatriisit ovat symmetrisiä, sillä kaikki niiden alkiot, jotka eivät ole lävistäjällä, ovat nollia. Matriisia sanotaan vinosymmetriseksi (engl. skew symmetric) jos sen vastamatriisi on A:n transpoosi eli

AT=A.

Symmetrisillä matriiseilla, ja niitä vastaavilla lineaarikuvauksilla, on muutama erittäin tärkeä ominaisuus:

  1. Symmetrisen matriisin kaikki ominaisarvot ovat reaalisia.
  2. Symmetrisen matriisin eri ominaisarvoihin liittyvät ominaisvektorit ovat ortogonaalisia.
  3. Symmetrisen matriisin ominaisvektoreista voidaan muodostaa vektoriavaruuden n ortonormaali kanta.

Näillä ominaisuuksilla on keskeinen asema monissa sovelluksissa, esimerkiksi kvanttimekaniikassa.

Lähteet

Malline:Viitteet

Kirjallisuutta

Malline:Tynkä/Matematiikka

  1. Viittausvirhe: Virheellinen <ref>-elementti; viitettä m1 ei löytynyt