Ohje:Kaavat

testwikistä
Siirry navigaatioon Siirry hakuun

Malline:Pähkinänkuoressa Malline:WPManuaalipystynavi

Wikipedian Mediawiki-ohjelmisto tukee osittain TeX-ladontajärjestelmää. Matemaattisten kaavojen näyttämiseen on lisäksi käytössä erillisiä laajennuksia LaTeXista ja AMS-LaTeXista.

MediaWiki suodattaa kaavojen komennot Texvc-muuntimen läpi, josta ne syötetään TeX:lle renderöitäväksi. Tulosteet tulevat näkyviin joko PNG-kuvina tai yksinkertaisena HTML:na käyttäjän valitsemista asetuksista ja kaavan monimutkaisuudesta riippuen.

Kaavojen käytön perusteet

Syntaksi

Matemaattiset kaavat syötetään <math>-tagien sisään (<math> ... </math>). Muokkauskentän työkalurivissä on tälle oma nappinsa, .

Tagien sisällä käytetään pelkkää ladontajärjestelmän syntaksia: MediaWikin mallineet tai yleiset muuttujat eivät ole käytettävissä. <math>-tageja voi kuitenkin käyttää MediaWikin ehtolauseiden sisässä, kuten esimerkiksi #if:n then- ja else-osissa.

TeX, kuten esimerkiksi HTML, ei huomioi ylimääräisiä välilyöntejä ja rivinvaihtoja.

Renderointi

TeX:n tulostamat PNG-kuvat ovat aina mustaa tekstiä valkoisella – ei siis läpinäkyvällä – taustalla. Näiden kuvatulosteiden ulkonäkö on riippumaton selaimen asetuksista ja käytössä olevista CSS-tyyleistä: sekä värit että kirjasinasetukset ovat aina samat. Kuvien CSS-valitsin on img.tex, ja niiden alt-attribuuttina on kuvan tuottamiseen käytetty koodi ilman math-tageja.

Muuttujien kursivointi on yleinen käytäntö matemaattisissa teksteissä, ja siksi kaavojen kirjaimet tulostuvat oletuksena kursiivilla funktioiden ja operaattorien nimiä lukuun ottamatta. Jotta muu teksti, kuten muuttujien indeksimerkinnät, tulostuisi ilman kursivointia, on käytettävä joko \text-, \mbox- tai \mathrm-komentoa.

Vertaa:

  • <math>{abc}</math>abc
  • <math>\text{abc}</math>abc

PNG-kuvina tulostuvat kaavat tukevat vain suppean ASCII-merkistön kirjaimia, joten esimerkiksi ääkköset å, ä ja ö, eivät näy sellaisenaan syötettynä ollenkaan, ellei tulostemuotona ole HTML.

TeX vai HTML?

Osan erikoismerkeistä voi saada näkyviin TeX:n lisäksi myös HTML:lla. Kummassakin tavassa on puolensa.

TeX-koodina (pakottaen PNG-tilaan) TeX-tuloste HTML-koodina HTML-tuloste
<math>\alpha\,\!</math> α <var>α</var> α
<math>\sqrt{2}</math> 2 √<span style="border-top: thin solid">2</span> 2
<math>\sqrt{1-e^2}</math> 1e2 √<span style="border-top: thin solid">1 − ''e''²</span> 1 − e²

Miksi HTML?

  1. HTML-muodossa esitetyt kaavat käyttäytyvät sivulla enemmän tavallisen tekstin tapaan. Ne sulautuvat tekstin sekaan, koska ne näytetään muun sisällön kanssa yhteneväisellä kirjasintyypillä, kirjasinkoolla ja väreillä. Samoin niiden ulkonäköä voi muokata haluamakseen CSS-tyyleillä. HTML-kaavoja voi myös jossain määrin kopioida ja liittää muualle kuten muutakin tekstiä.
  2. HTML-kaavat latautuvat hitaiden yhteyksien käyttäjillä nopeammin.
  3. Järjestelmällisesti yhtenevässä muodossa syötetyt HTML-kaavat voivat itse asiassa sisältää kaiken olennaisen semanttisen tiedon, jolloin kaava voidaan muuntaa jälkeenpäin johonkin muuhun merkintäjärjestelmään. HTML:lla voidaan jopa joskus käyttää monipuolisempaa semantiikaa kuin TeX:llä, esimerkiksi näin:
    1. ''i''i, imaginääriyksikkö
    2. <var>i</var>i, mielivaltainen indeksimuuttuja.

Miksi TeX?

  1. TeX on suunniteltu kaavojen merkitsemiseen, toisin kuin HTML. Etenkin laajoissa kaavoissa TeX-koodi on lyhyempää ja helppolukuisempaa.
  2. TeX on yleisesti semanttisesti tarkempaa kuin HTML. TeX-merkintä <math>x</math> tarkoittaa matemaattista muuttujaa x siinä missä HTML:n x on monitulkintainen.
  3. TeX-koodi voidaan tarvittaessa muuntaa HTML:ksi palvelimella, jolloin saadaan molempien menetelmien hyödyt.
  4. TeX on ammattimatemaatikkojen, tieteilijöiden ja insinöörien laajasti käyttämä merkintäjärjestelmä. Ammattilaisten kynnys sisällön laajentamiseen pienenee, kun he voivat käyttää tuntemaansa järjestelmää.
  5. TeX-sisältö näkyy tavallisimpien selaimien oletusasetuksilla suurempana ja helppolukuisempana kuin muotoilemattomat HTML-kaavat.
  6. TeX-kaavat voidaan muuntaa XML-kieliseen MathML-muotoon.
  7. TeX-kaava tulostuu luotettavasti sen tekijän haluamalla tavalla, kun taas HTML-sisältö voi näyttää erilaiselta muun muassa käyttäjän selaimesta, selainversiosta ja kirjasinvalikoimasta riippuen.

Funktiot, symbolit ja erikoismerkit

Tarkkeet

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} a´a`a^a~a˘
\check{a} \bar{a} \ddot{a} \dot{a} aˇa¯a¨a˙

Alkeisfunktiot

\sin a \cos b \tan c sinacosbtanc
\sec d \csc e \cot f secdcscecotf
\arcsin h \arccos i \arctan j arcsinharccosiarctanj
\sinh k \cosh l \tanh m \coth n\! sinhkcoshltanhmcothn
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\! shochpthq
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t arsinhrarcoshsartanht
\lim u \limsup v \liminf w \min x \max y\! limulim supvlim infwminxmaxy
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\! infzsupaexpblnclgdlogelog10fkerg
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n deghgcdiPrjdetkhomlargmdimn

Modulaariaritmetiikka

s_k \equiv 0 \pmod{m} sk0(modm)
a\,\bmod\,b amodb
\mid \; \nmid

Derivaatat

\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} xdxx˙y¨dy/dxdydx2yx1x2

Joukot

\forall \exists \nexists \empty \emptyset \varnothing
\in \ni \not \in \notin \subset \subseteq \supset \supseteq ∉
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup

Operaattorit

+ \oplus \bigoplus \pm \mp - +±
\times \otimes \bigotimes \cdot \circ \bullet \bigodot ×
\star * / \div \frac{1}{2} */÷12

Logiikka

\land (or \and) \wedge \bigwedge \bar{q} \to p q¯p
\lor \vee \bigvee \lnot \neg q \And ¬¬q&

Juuret

\sqrt{2} \sqrt[n]{x} 2xn

Relaatiot

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} =˙=def
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto <>≢or

Geometria

\Diamond \Box \triangle \angle \perp \| 45^\circ 45

Nuolet

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow ↛
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow

Erikoismerkit

\And \eth \S \P \% \dagger \ddagger \ldots \cdots &ð§%
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar ı
\ell \mho \Finv \Re \Im \wp \complement
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp

Luokittelemattomat uudet symbolit

\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown 𝕜
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
\subsetneq
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus ȷ
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq ⨿
\dashv \asymp \doteq \parallel
\ulcorner \urcorner \llcorner \lrcorner

Suuremmat merkinnät

Alaindeksit, yläindeksit ja integraalit

Ominaisuus Syntaksi Tuloste
HTML PNG
Yläindeksi a^2 a2 a2
Alaindeksi a_2 a2 a2
Ryhmittely a^{2+2} a2+2 a2+2
a_{i,j} ai,j ai,j
Ylä- ja alaindeksi ilman väliä ja välin kanssa x_2^3 x23 x23
{x_2}^3 x23 x23
Yläindeksin yläindeksi 10^{10^{ \,\!{8} } 10108
Yläindeksin yläindeksi 10^{10^{ \overset{8}{} }} 10108
Yläindeksin yläindeksi (näkyy HTML:na väärin joissain selaimissa) 10^{10^8} 10108
Ylä- ja alaindeksi ennen ja jälkeen \sideset{_1^2}{_3^4}\prod_a^b 3412ab
{}_1^2\!\Omega_3^4 12Ω34
Pinoaminen \overset{\alpha}{\omega} ωα
\underset{\alpha}{\omega} ωα
\overset{\alpha}{\underset{\gamma}{\omega}} ωγα
\stackrel{\alpha}{\omega} ωα
Derivaatta (PNG-tulosteen pakotus) x', y'', f', f''\!   x,y,f,f
Derivaatta (kursivoitu f ja indeksointipilkku saattavat olla päällekkäin HTML-tulosteessa) x', y'', f', f'' x,y,f,f x,y,f,f
Derivaatta (näkyy väärin HTML:na) x^\prime, y^{\prime\prime} x,y x,y
Derivaatta (näkyy väärin PNG:nä) x\prime, y\prime\prime x,y x,y
Derivaatan piste \dot{x}, \ddot{x} x˙,x¨
Alaviivat, yläviivat ja vektorit \hat a \ \bar b \ \vec c a^ b¯ c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} ab cd def^
\overline{g h i} \ \underline{j k l} ghi jkl_
Nuolet A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C An+μ1BTn±i1C
Yläpuolinen kaari \overbrace{ 1+2+\cdots+100 }^{5050} 1+2++1005050
Alapuolinen kaari \underbrace{ a+b+\cdots+z }_{26} a+b++z26
Summa \sum_{k=1}^N k^2 k=1Nk2
Summa (\textstyle-määrite) \textstyle \sum_{k=1}^N k^2 k=1Nk2
Tulo \prod_{i=1}^N x_i i=1Nxi
Tulo (\textstyle-määrite) \textstyle \prod_{i=1}^N x_i i=1Nxi
Kategorinen summa \coprod_{i=1}^N x_i i=1Nxi
Kategorinen summa (\textstyle-määrite) \textstyle \coprod_{i=1}^N x_i i=1Nxi
Raja-arvo \lim_{n \to \infty}x_n limnxn
Raja-arvo (\textstyle-määrite) \textstyle \lim_{n \to \infty}x_n limnxn
Integraali \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integraali (rajat eri tyylillä) \int_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integraali (\textstyle-määrite) \textstyle \int\limits_{-N}^{N} e^x\, dx NNexdx
Integraali (\textstyle-määrite, rajat eri tyylillä) \textstyle \int_{-N}^{N} e^x\, dx NNexdx
Kaksoisintegraali \iint\limits_D \, dx\,dy Ddxdy
Kolmoisintegraali \iiint\limits_E \, dx\,dy\,dz Edxdydz
Nelinkertainen integraali \iiiint\limits_F \, dx\,dy\,dz\,dt Fdxdydzdt
Viiva- eli polkuintegraali \int_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
Suljettu viiva- eli polkuintegraali \oint_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
Leikkaus \bigcap_1^n p 1np
Yhdiste \bigcup_1^k p 1kp

Murtoluvut, matriisit, moniriviset kaavat

Ominaisuus Syntaksi Tuloste
Murtoluvut (oletuksena suurikokoisia) \frac{2}{4}=0.5 24=0.5
Pienikokoiset murtoluvut \tfrac{2}{4} = 0.5 24=0.5
Erikseen suurikokoiseksi määritetyt murtoluvut \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a 24=0.52c+2d+24=a
Suurikokoiset sisäkkäiset murtoluvut \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a 2c+2d+24=a
Binomikerroin (oletuksena suurikokoinen) \binom{n}{k} (nk)
Pienikokoinen binomikerroin \tbinom{n}{k} (nk)
Erikseen suurikokoiseksi määritetty binomikerroin \dbinom{n}{k} (nk)
Matriisit
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
xyzv
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
|xyzv|
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
xyzv
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
[0000]
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
{xyzv}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
(xyzv)
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
(abcd)
Ehtoluettelot
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n)={n/2,if n is even3n+1,if n is odd
Moniriviset yhtälöt
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
f(x)=(a+b)2=a2+2ab+b2
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
f(x)=(ab)2=a22ab+b2
Moniriviset yhtälöt (vaatii sarakkeiden lukumäärän määrittämisen &-merkeillä – käytettävä vain tarvittaessa)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
z=af(x,y,z)=x+y+z
Moniriviset yhtälöt (edellinen toteutus oikealle tasaavana, lcr)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
z=af(x,y,z)=x+y+z
Pitkän kaavan jakaminen useampaan tagiin, jotta rivitys toimisi. Tämä muuttaa merkintöjen välejä.

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x)=n=0anxn=a0+a1x+a2x2+

Yhtälöryhmät
\begin{cases}
    3x + 5y + 5z = 0 \\
    7x - 2y + 4z = 0\\
   -6x + 3y + 2z = 0
\end{cases}
{3x+5y+z=07x2y+4z=06x+3y+2z=0
Taulukot
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
abS001011101110

Sulut

Sulut suurten merkintöjen ympärilä:

Kuvaus Syntaksi Tuloste
Väärin ( \frac{1}{2} ) (12)
Oikein \left ( \frac{1}{2} \right ) (12)

\left- ja \right- komentoja voi tarkentaa erilaisilla määritteillä:

Ominaisuus Syntaksi Tuloste
Kaarisulut \left ( \frac{a}{b} \right ) (ab)
Hakasulut \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack [ab][ab]
Aaltosulut \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace {ab}{ab}
Kulmasulut \left \langle \frac{a}{b} \right \rangle ab
Pystyviivat ja kaksoispystyviivat \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| |ab|cd
Ala- ja ylähakaset \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil abcd
Vinot viivat \left / \frac{a}{b} \right \backslash /ab\
Nuolet \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow ababab
Erilaiset sulut vasemmalla ja oikealla \left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right | [0,1)
ψ|
Toisen puolen sulku jätetään pois \left.- tai \right.-komennolla \left . \frac{A}{B} \right \} \to X AB}X
Sulkujen koko \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/ ((((]]]]
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle {{{{
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| ||||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

Kirjaimet ja erikoiskirjasimet

Texvc ei tulosta kaikkia Unicoden merkkejä. Sen tukemat merkit on listattu alla.

Kreikan kirjaimet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta ABΓΔEZ
\Eta \Theta \Iota \Kappa \Lambda \Mu HΘIKΛM
\Nu \Xi \Pi \Rho \Sigma \Tau NΞΠPΣT
\Upsilon \Phi \Chi \Psi \Omega ΥΦXΨΩ
\alpha \beta \gamma \delta \epsilon \zeta αβγδϵζ
\eta \theta \iota \kappa \lambda \mu ηθικλμ
\nu \xi \pi \rho \sigma \tau νξπρστ
\upsilon \phi \chi \psi \omega υϕχψω
\varepsilon \digamma \vartheta \varkappa εϝϑϰ
\varpi \varrho \varsigma \varphi ϖϱςφ
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} 𝔸𝔹𝔻𝔼𝔽𝔾
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} 𝕀𝕁𝕂𝕃𝕄
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} 𝕆𝕊𝕋
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} 𝕌𝕍𝕎𝕏𝕐
Boldface
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} 𝐀𝐁𝐂𝐃𝐄𝐅𝐆
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} 𝐇𝐈𝐉𝐊𝐋𝐌
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} 𝐍𝐎𝐏𝐐𝐑𝐒𝐓
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} 𝐔𝐕𝐖𝐗𝐘𝐙
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} 𝐚𝐛𝐜𝐝𝐞𝐟𝐠
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} 𝐡𝐢𝐣𝐤𝐥𝐦
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} 𝐧𝐨𝐩𝐪𝐫𝐬𝐭
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} 𝐮𝐯𝐰𝐱𝐲𝐳
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} 𝟎𝟏𝟐𝟑𝟒
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} 𝟓𝟔𝟕𝟖𝟗
Boldface (kreikka)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} ABΓΔEZ
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} HΘIKΛM
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} NΞΠPΣT
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} ΥΦXΨΩ
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} αβγδϵζ
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} ηθικλμ
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} νξπρστ
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} υϕχψω
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} εϝϑϰ
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} ϖϱςφ
Kursiivi
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} 𝐴𝐵𝐶𝐷𝐸𝐹𝐺
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} 𝐻𝐼𝐽𝐾𝐿𝑀
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} 𝑁𝑂𝑃𝑄𝑅𝑆𝑇
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} 𝑈𝑉𝑊𝑋𝑌𝑍
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} 𝑎𝑏𝑐𝑑𝑒𝑓𝑔
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} 𝑖𝑗𝑘𝑙𝑚
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} 𝑛𝑜𝑝𝑞𝑟𝑠𝑡
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} 𝑢𝑣𝑤𝑥𝑦𝑧
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} 01234
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} 56789
Roman
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} ABCDEFG
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} HIJKLM
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} NOPQRST
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} UVWXYZ
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} abcdefg
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} hijklm
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} nopqrst
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} uvwxyz
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} 01234
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} 56789
Fraktur
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} 𝔄𝔅𝔇𝔈𝔉𝔊
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} 𝔍𝔎𝔏𝔐
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} 𝔑𝔒𝔓𝔔𝔖𝔗
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} 𝔘𝔙𝔚𝔛𝔜
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} 𝔞𝔟𝔠𝔡𝔢𝔣𝔤
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} 𝔥𝔦𝔧𝔨𝔩𝔪
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} 𝔫𝔬𝔭𝔮𝔯𝔰𝔱
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} 𝔲𝔳𝔴𝔵𝔶𝔷
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} 01234
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} 56789
Kalligrafia
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} 𝒜𝒞𝒟𝒢
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} 𝒥𝒦
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} 𝒩𝒪𝒫𝒬𝒮𝒯
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} 𝒰𝒱𝒲𝒳𝒴𝒵
Heprea
\aleph \beth \gimel \daleth
Ominaisuus Syntaksi Tuloste
muotoilemattomat kirjaimet \mbox{abc} abc abc
muotoilematon ja kursivoitu teksti (väärin) \mbox{if} n \mbox{is even} ifnis even ifnis even
muotoilematon ja kursivoitu teksti (oikein) \mbox{if }n\mbox{ is even} if n is even if n is even
muotoilematon ja kursivoitu teksti (”~” on sitova välilyönti, ”\ ” luo välilyönnin) \mbox{if}~n\ \mbox{is even} ifn is even ifn is even

Värit

Kaavoissa voidaan käyttää värejä:

  • {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
    x2+2x1
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    x1,2=b±b24ac2a

Muista värejä käyttäessäsi, että niiden sisältämä viesti tulisi aina välittää myös muilla keinoilla. Katso myös kaikkien LaTeXin värinimien luettelo.

Muotoseikat

Välistys

TeX hoitaa tavallisen välistyksen automaattisesti, mutta joskus välejä on tarvetta säätää itse.

Ominaisuus Syntaksi Tuloste
kaksi kertaa neljä välilyöntiä a \qquad b ab
neljä välilyöntiä a \quad b ab
tekstivälilyönti a\ b a b
tekstivälilyönti ilman PNG-muunnosta a \mbox{ } b a b
suuri välilyönti a\;b ab
keskikokoinen välilyönti a\>b ei tuettu
pieni välilyönti a\,b ab
ei välilyöntiä ab ab
pieni negatiivinen välilyönti a\!b ab

Pilkku desimaalierottimena

Jos kaava muutetaan kuvaksi, tulee pilkun jälkeen hieman tyhjää tilaa. Käytettäessä pilkkua desimaalierottimena on pilkku ympäröitävä aaltosulkeilla.

Kuvaus Syntaksi Tuloste
Oikein 3{,}14 3,14
Väärin 3,14 3,14

Kaavan koon pienentäminen

LaTeX-kaavoja voidaan latoa joko display- tai inline-tyyleillä. Display-tyyli on tarkoitettu omalla rivillään esitettävien kaavojen esittämiseen ja se näyttää tältä:

NNexdx.

Komento <math></math> latoo kaavat oletuksena display-tyylillä.

Inline-tyyli puolestaan on tarkoitettu tekstin seassa esitettäville kaavoille, ja se tuottaa display-tyyliä tiiviimmän lopputuloksen, joka ei esimerkiksi venytä rivivälejä yhtä pahasti kuin display-tyylinen kaava. Ylläoleva kaava näyttää inline-tyylisenä tältä: NNexdx. Komento

<math> \textstyle </math>

ottaa tiiviimmän inline-tyylin käyttöön.

Kaavan sijoittelu tekstissä

Oletustyylitiedoston CSS-määrite

img.tex { vertical-align: middle; }

sovittaa esimerkiksi kaavan NNexdx hyvin tekstin sekaan.

Jos muunlaista sijoittelua tarvitaan, voidaan kaavan ympärille sijoittaa <math style="vertical-align:-100%;">...</math> ja kokeilla erilaisia vertical-align-argumentin arvoja. Lopputulos voi vaihdella selaimittain.

Tätä keinoa tulisi kuitenkin välttää, sillä jos kaavojen piirtämistä parannetaan tulevaisuudessa palvelimen päässä, niin tällaiset ylimääräiset CSS-määritteet sijoittavat kaavat taas väärään kohtaan.

PNG-tilaan pakottaminen

Palvelimen voi pakottaa renderoimaan kaavan PNG-tilassa kahdella tavalla:

  • Lisäämällä sen loppuun pienen välilyönnin koodin \, (itse välilyönti ei tule näkyviin). Tällaiset kaavat näkyvät ”Näytä HTML:nä, jos yksinkertainen, muuten PNG:nä” -asetuksen valinneelle PNG:nä, mutta ”Näytä HTML:nä, jos mahdollista” -käyttäjille HTML-tulosteena.
  • Lisäämällä johonkin kohtaan pienen välilyönnin ja negatiivisen välilyönnin koodin \,\!, jotka kumoavat toisensa. Tällöin kaava näkyy PNG:nä myös ”Näytä HTML:nä, jos mahdollista, muuten PNG:nä” -asetuksen valinneille.

Artikkelin lähdekoodiin kannattaa lisätä kommentti koodien tarkoituksesta, ettei kukaan vahingossa ”korjaa” niitä turhina pois:

<!-- \,\! saa kaavan tulostumaan PNG:nä HTML:n sijasta. Älä poista sitä. -->

Esimerkkejä

Syntaksi Tuloste
a^{c+2} ac+2
a^{c+2} \, ac+2
a^{\,\!c+2} ac+2
a^{b^{c+2}} abc+2 (Virheellinen ”Näytä HTML:nä, jos mahdollista, muuten PNG:nä” -asetuksella!)
a^{b^{c+2}} \, abc+2 (Virheellinen ”Näytä HTML:nä, jos mahdollista, muuten PNG:nä” -asetuksella!)
a^{b^{c+2}}\approx 5 abc+25 (oikein tulostuvan -merkin takia \,\!-koodia ei tarvita)
a^{b^{\,\!c+2}} abc+2
\int_{-N}^{N} e^x\, dx NNexdx

Kehitysehdotukset ja virheraportit

TeX-toteutukseen liittyvä kehityskeskustelu ja virheraportit tulisi lähettää wikitech-l-sähköpostilistalle tai Wikimedian Bugzillaan MediaWiki extensions -osioon.

Aiheesta muualla