Lineaarinen aliavaruus

testwikistä
Siirry navigaatioon Siirry hakuun

Lineaarinen aliavaruus eli vektorialiavaruus on vektoriavaruuden osajoukko, joka on itsekin vektoriavaruus käytetyn laskutoimituksen ja skalaarikunnan K suhteen. Sitä kutsutaan hyvin usein vain aliavaruudeksi, jos ei ole vaaraa sekoittaa sitä topologiseen aliavaruuteen. Aliavaruuden dimensio on aina pienempi tai yhtä suuri kuin alkuperäisen avaruuden. Jos aliavaruus on pienempi kuin alkuperäinen avaruus, kutsutaan sitä aidoksi aliavaruudeksi.[1]

Jos V on vektoriavaruus ja W on sen osajoukko, niin W on avaruuden V aliavaruus jos ja vain jos 0W, αxW ja x+yW kaikilla α, x,yW.

Siis esimerkiksi 2-tason (eli x-y-tason) aliavaruudet ovat 2 itse (sen ainoa "epäaito aliavaruus"), jokainen origon läpi kulkeva suora ja "triviaali avaruus" {0}, johon kuuluu pelkkä origo. Vastaavasti avaruuden 3 aliavaruudet ovat 3, {0} sekä kaikki origon sisältävät tasot ja suorat.

Aliavaruuskriteeri

Aliavaruuskriteeri on lause, joka kertoo milloin jokin vektoriavaruus on toisen vektoriavaruuden aliavaruus. Olkoon V jokin vektoriavaruus ja U jokin sen osajoukko, joka ei ole tyhjä. Nyt joukko U on V:n aliavaruus, jos ja vain jos

a𝐱+𝐲U

Kaikilla vektoreilla 𝐱,𝐲U ja skalaareilla aK.

(Tavanomaisimpien vektoriavaruuksien skalaarikuntana K on reaalilukujen joukko.)

Lähteet

Malline:Viitteet

Kirjallisuutta

Malline:Tynkä/Matematiikka

ru:Векторное пространство#Подпространство

  1. Viittausvirhe: Virheellinen <ref>-elementti; viitettä m1 ei löytynyt