Ackermannin funktio

testwikistä
Siirry navigaatioon Siirry hakuun

Malline:Lähteetön Ackermannin funktio on ei-primitiivirekursiivinen funktio[1], joka on nimetty saksalaisen matemaatikon Wilhelm Ackermannin mukaan. Ackermann julkaisi funktion vuonna 1928.

Funktio

Ackermannin kolmen argumentin funktio, φ(m,n,p), on määritelty siten, että arvoilla p = 0, 1, 2, se tuottaa peruslaskutoimitukset yhteenlasku, kertolasku ja potenssiinkorotus seuraavasti:

φ(m,n,0)=m+n,
φ(m,n,1)=mn,
φ(m,n,2)=mn,

Ja arvoilla p > 2 se laajenee peruslaskutoimituksia edemmäksi, jota voi kuvata Knuthin nuolinotaatiolla:

φ(m,n,p)=mp1n.

Eräs yleisimmin käytetyistä versioista on kahden argumentin Ackermann–Péter funktio, joka määritellään positiivisilla muuttujilla m ja n:[2]

A(m,n)={n+1jos m=0A(m1,1)jos m>0 ja n=0A(m1,A(m,n1))jos m>0 ja n>0.

Lausekkeen arvo nousee nopeasti, nopeammin kuin eksponenttifunktio[1]. Näin käy jopa pienten numeroiden käytöllä. Esimerkiksi A(4,2) on kokonaisluku, jossa on 19 729 numeroa.[3]

A(mn)
m\n 0 1 2 3 4 n
0 1 2 3 4 5 n+1
1 2 3 4 5 6 n+2=2+(n+3)3
2 3 5 7 9 11 2n+3=2(n+3)3
3 5 13 29 61 125 2(n+3)3
4 13

=2223
65533

=22223
265536 − 3

=222223

=A(4,2)
22655363

=2222223
222655363

=22222223
2223n + 3

Ackermannin numerot

Kirjassaan The Book of Numbers, John Horton Conway ja Richard K. Guy määrittelevät että Ackermannin numerot ovat muotoa 1↑1, 2↑↑2, 3↑↑↑3, jne.;[4] eli ”n”:s Ackermannin numero on n↑nn (n = 1, 2, 3, ...), missä m↑kn on Knuthin nuolinotaatio-versio Ackermannin funktiosta.

Ensimmäiset Ackermannin numerot ovat:

  • 1↑1 = 11 = 1,
  • 2↑↑2 = 2↑2 = 22 = 4,
  • 3↑↑↑3 = 3↑↑3↑↑3 = 3↑↑(3↑3↑3) = 3333=37625597484987=3333...37625597484987 kolmosta

Neljäs numero, 4↑↑↑↑4, voidaan muodostaa tetraatiotorneilla seuraavasti:

  • 4↑↑↑↑4 = 4↑↑↑4↑↑↑4↑↑↑4 = 4↑↑↑4↑↑↑(4↑↑4↑↑4↑↑4)
=4...444444...444444 nelostanelosta

Selitys: keskimmäisessä kerroksessa on tetraatiotorni, jonka korkeus on 4444 ja lopputulos on ylin kerros tetraatio-nelosia, joiden lukumäärä vastaa keskimmäisen kerroksen tulosta. Vertailun vuoksi on yksinkertainen lauseke 44 yksin suurempi kuin googolplex, joten jo neljäs Ackermannin luku on sangen iso.

Lähteet

Malline:Viitteet Malline:Käännös Malline:Tynkä/Matematiikka

  1. 1,0 1,1 Malline:Verkkoviite
  2. The Ackermann Function Archive.org
  3. Decimal expansion of A(4,2) Archive.org
  4. John Horton Conway and Richard K. Guy. The Book of Numbers. New York: Springer-Verlag, s. 60–61, 1996. Malline:ISBN