Polku (topologia)

Polku on topologian käsite, joka kuvaa yhteyttä kahden pisteen välillä jossakin topologisessa avaruudessa. Täsmällisemmin määriteltynä polku pisteestä pisteeseen avaruudessa on sellainen jatkuva kuvaus
että ja .[1] Tällöin on polun alkupiste, on sen loppupiste, ja polku yhdistää pisteet ja .[2][3]
Intuitiivisesti voi ajatella, että polkufunktion argumentti on aikakoordinaatti , ja funktio kuvaa pisteen liikkumista käyrää pitkin ajan kuluessa. Alkuhetkellä piste on polun alkupisteessä , ja liikkuu sitten jotakin käyrää (polkufunktion kuvajoukkoa) pitkin jatkuvasti, ilman hyppäyksiä, kunnes loppuhetkellä se on polun loppupisteessä .[4]
Koska reaalilukuväli on yhtenäinen, niin jatkuva kuvaus kuvaa sen yhtenäiseksi joukoksi maaliavaruudessa .[3] Niinpä polun yhdistämät pisteet kuuluvat samaan yhtenäiseen komponenttiin (intuitiivisesti: yhtenäinen aliavaruus ei voi ulottua epäyhtenäisessä avaruudessa olevan ”aukon” yli[2]). Topologinen avaruus on polkuyhtenäinen, jos sen minkä tahansa kahden pisteen välillä on olemassa polku. Topologian perustuloksiin kuuluu, että jos avaruus on polkuyhtenäinen, niin se on myös yhtenäinen. Käänteinen ei päde: on olemassa yhtenäisiä avaruuksia, jotka eivät kuitenkaan ole polkuyhtenäisiä. Klassinen esimerkki on topologin sinikäyrä.[2][5]
Lähteet
- ↑ Viittausvirhe: Virheellinen
<ref>-elementti; viitettäeomei löytynyt - ↑ 2,0 2,1 2,2 Viittausvirhe: Virheellinen
<ref>-elementti; viitettäojanperaei löytynyt - ↑ 3,0 3,1 Viittausvirhe: Virheellinen
<ref>-elementti; viitettäparkkonenei löytynyt - ↑ Viittausvirhe: Virheellinen
<ref>-elementti; viitettäfreiwaldei löytynyt - ↑ Viittausvirhe: Virheellinen
<ref>-elementti; viitettämathworldei löytynyt