Imaginaariyksikkö

testwikistä
Versio hetkellä 28. helmikuuta 2025 kello 23.18 – tehnyt imported>Ipr1Bot (Korjataan ISBN-tunniste)
(ero) ← Vanhempi versio | Nykyinen versio (ero) | Uudempi versio → (ero)
Siirry navigaatioon Siirry hakuun

Matematiikassa imaginaariyksikkö mahdollistaa reaalilukujen laajentamisen kompleksilukujen joukkoon. Sen täsmällinen määritelmä riippuu tavasta, jolla laajennus tehdään. Imaginaariyksikköä merkitään i=1, missä siis i2=1.[1] Toisinaan imaginaariyksiköstä käytetään merkintää j ja ι.

Perussyy tähän laajennukseen on, että kaikilla polynomiyhtälöillä ei ole ratkaisua reaalilukujen joukossa. Erityisesti yhtälö x2+1=0 on tällainen. Ajattelemalla, että kyseisellä yhtälöllä olisikin ratkaisuna imaginaariyksikkö i ja määrittelemällä i:n laskutoimitukset sopivasti, saadaankin jokaiselle reaalikertoimiselle polynomiyhtälölle f(x)=0 ratkaisu. (Katso algebrallinen sulkeuma ja algebran peruslause).

Imaginaariyksikkö on myös osa Eulerin lausetta funktioteoriassa.

Määritelmä

Määritelmän mukaan i on eräs toisen asteen yhtälön

x2+1=0 

ratkaisuista, jotka ovat

x=±1=±i.

Reaalilukujen laskusäännöt voidaan laajentaa imaginaarisille ja kompleksisille luvuille ajattelemalla lukua i muuttujana, kertomalla lukuja kuten polynomeja ja ottamalla huomioon, että i2=−1. Korkeammista eksponenteista imaginaariyksikön eksponentti voidaan palauttaa välille 0,...,3 kaavan in=-in-2 avulla.

Imaginaariyksikön käänteisluku on sama kuin sen vastaluku, koska

1i=1iii=ii2=i1=i.

Lähteet

Malline:Viitteet

Kirjallisuutta