Gaussin laki magneettikentille

testwikistä
Versio hetkellä 12. marraskuuta 2024 kello 15.10 – tehnyt imported>Ipr1Bot (Korvataan ISBN-tunniste)
(ero) ← Vanhempi versio | Nykyinen versio (ero) | Uudempi versio → (ero)
Siirry navigaatioon Siirry hakuun

Gaussin laki magneettikentille kertoo, että magneettivuo suljetun pinnan P läpi saadaan laskemalla pinnan sisäänsä sulkemien magneettisten napojen voimakkuuksien pi summa. Integraalimuodossa tämä voidaan kirjoittaa siis

P𝐁d𝐀=pi,

missä B on magneettivuon tiheys. Koska yksittäisiä magneettisia monopoleja ei vielä koskaan ole havaittu luonnossa, kumoavat magneettisten napojen voimakkuudet pareittain toisensa. Tällöin Gaussin divergenssilausetta käyttäen laki voidaan kirjoittaa muotoon

V𝐁dV=0,

missä integroidaan pinnan P sisäänsä sulkeman tilavuuden V yli. Koska tämä pätee kaikille suljetuille pinnoille, voidaan Gaussin laki magneettikentille kirjoittaa differentiaalimuodossa

𝐁=0.

Koska magneettikentän divergenssi on nolla, on kenttä lähteetön, mikä on suora seuraus yksittäisten magneettisten monopolien löytämisen vaikeudesta. Magneettiset kenttäviivat muodostavat aina suljettuja silmukoita. Gaussin laki magneettikentille on magneettinen analogia Gaussin laille sähkökentille, ja molemmat kuuluvat Maxwellin yhtälöihin.

Katso myös

Lähteet

  • Mansfield and O'Sullivan, Understanding Physics. Sons Wiley and Ltd, 1998.

Kirjallisuutta