Ketjusääntö

testwikistä
Siirry navigaatioon Siirry hakuun

Differentiaalilaskennassa ketjusääntö antaa keinon derivoida yhdistetty funktio. Jos funktio g on derivoituva pisteessä x ja f on derivoituva pisteessä g(x), on ketjusäännön mukaan voimassa

D(fg)(x)=f(g(x))g(x),

missä ' tarkoittaa derivaattaa x:n suhteen.[1] Leibnizin merkintää käyttäen ketjusääntö saa muodon

dfdx=dfdgdgdx.

Tässä argumentit on jätetty pois selkeyden vuoksi (edelleen siis g=g(x) ja f=f(g(x))). Ketjusääntö voidaan todistaa karakterisointilauseen avulla. Ketjusäännöstä on myös versio matriisien kertolaskulle.[2]

Lähteet

Malline:Viitteet

Aiheesta muualla

Malline:Tynkä/Matematiikka