Ääriarvo

testwikistä
Versio hetkellä 3. syyskuuta 2019 kello 17.57 – tehnyt imported>Putsari (linkki pois)
(ero) ← Vanhempi versio | Nykyinen versio (ero) | Uudempi versio → (ero)
Siirry navigaatioon Siirry hakuun

Matematiikassa funktion ääriarvo on funktion arvo sellaisessa pisteessä, että tämän pisteen jossakin ympäristössä olevissa pisteissä funktion arvo on aina joko suurempi tai yhtä suuri (minimi) tai pienempi tai yhtä suuri (maksimi) kuin ääriarvo. Ääriarvot voivat olla funktion maksimeja tai minimejä. [1] Ääriarvot voivat olla paikallisia eli lokaaleja tai yleisiä eli globaaleja ääriarvoja. Funktion derivaatta on nolla niissä ääriarvokohdissa, joissa funktio on derivoituva. (Huomaa, että esimerkiksi suljetun välin päätepisteissä funktio ei ole derivoituva, vaikka sama funktio ilman tarkasteluvälin rajausta olisikin derivoituva kaikkialla.)

Paikallinen minimi

Funktion f paikallinen (lokaali) minimi välillä [a,b] on x*δ>0:f(x*)f(x)x[a,b]{x||xx*|<δ}

Funktion f paikallinen (lokaali) minimi välillä [a,b] on x* jos ja vain jos ehto f(x*)f(x) toteutuu kaikilla x , jotka kuuluvat väliin [a,b] ja ovat pisteen x* lähellä.

Paikallinen maksimi

Funktion f paikallinen (lokaali) maksimi välillä [a,b] on x*δ>0:f(x*)f(x)x[a,b]{x||xx*|<δ}

Funktion f paikallinen (lokaali) maksimi välillä [a,b] on x* jos ja vain jos ehto f(x*)f(x) toteutuu kaikilla x , jotka kuuluvat väliin [a,b] ja ovat pisteen x* lähellä.

Globaali minimi

Funktion f (globaali) minimi on x*f(x*)f(x)x

Minimi on siis funktion kaikkein pienin arvo.

Globaali maksimi

Funktion f (globaali) maksimi on x*f(x*)f(x)x

Maksimi on siis funktion kaikkein suurin arvo.

Funktion cos(3πx)/x paikallinen ja globaali maksimi ja minimi, kun 0.1≤x≤1.1

Ääriarvolauseita

Funktiolla voi olla ääriarvokohta (ns. kriittiset pisteet)

  • derivaatan nollakohdissa
  • suljetun välin päätepisteissä
  • epäjatkuvuuskohdissa
  • kohdissa, joissa derivaatta ei ole olemassa

Jatkuvalla funktiolla on suljetulla välillä suurin ja pienin arvo.

Jos funktiolla on suurin arvo, se on yksi maksimeista. Jos funktiolla on pienin arvo, se on yksi minimeistä.

Lähteet

Malline:Viitteet

Malline:Tynkä/Matematiikka

  1. Viittausvirhe: Virheellinen <ref>-elementti; viitettä m1 ei löytynyt