Osittelulaki

testwikistä
Versio hetkellä 13. marraskuuta 2024 kello 02.21 – tehnyt imported>Ipr1Bot (Korvataan ISBN-tunniste)
(ero) ← Vanhempi versio | Nykyinen versio (ero) | Uudempi versio → (ero)
Siirry navigaatioon Siirry hakuun

Osittelulaki on myös distributiivisuutena tunnettu algebrallinen ominaisuus laskuoperaatiolle.[1] Mielivaltaiset laskuoperaatiot ja noudattavat osittelulakia tietyssä algebrassa, jos

a(bc)=(ab)(ac)(1)

(bc)a=(ba)(ca)(2)

pitävät paikkansa kaikille a, b ja c.

Huomaa että molemmat yhtälöt pitävät paikkansa vain, jos kertolaskuoperaatio on vaihdannainen eli kommutatiivinen. Yhtälö (1) on osittelulaki vasemmalta puolelta ja yhtälö (2) oikealta. Kun molemmat toteutuvat sanotaan että tulo-operaatio on distributiivinen yhteenlaskuoperaation suhteen.

Esimerkki

Olkoot ja tavanomaiset yhteen- ja kertolaskuoperaatiot, sekä x,y,z. Reaalilukujen tavanomainen tulo-operaatio on vaihdannainen yhteenlaskuoperaation suhteen, joten molemmin puoleinen distributiivisuus pätee. Tällöin osittelulaki, eli "summan tulo on tulojen summa", saa tutun muodon.

x(y+z)=xy+xz=yx+zx=(y+z)x

Katso myös

Lähteet

Malline:Viitteet

Kirjallisuutta

Malline:Tynkä/Matematiikka

  1. Viittausvirhe: Virheellinen <ref>-elementti; viitettä m1 ei löytynyt