Stern–Volmer-kuvaaja

testwikistä
Versio hetkellä 28. helmikuuta 2025 kello 18.14 – tehnyt imported>Ipr1Bot (Muutetaan taikalinkki ISBN-mallineelle)
(ero) ← Vanhempi versio | Nykyinen versio (ero) | Uudempi versio → (ero)
Siirry navigaatioon Siirry hakuun

Stern–Volmer-kuvaaja on analyysimenetelmä, jonka avulla voidaan selvittää fotokemiallisesti virittyneen kemiallisen yhdisteen molekyylien elektronisen viritystilan vaimenemista.Malline:Efn Kun kemialliseen yhdisteeseen kohdistetaan sähkömagneettista säteilyä, se absorboi säteilyn spektristä itselleen ominaisen osan. Tämän seurauksena yhdisteen molekyylit virittyvät. Tämä viritystila voi purkautua fluoresenssina tai fosforenssina, ja tämän tapahtuman kinetiikka on analysoitavissa.[1]

Viritystila ja reaktio

Molekyylin absorboidessa säteilyä, sen perustilan( S0 ) elektroni virittyy energeettisesti ylempään energiatilaan, joka on tyypillisesti ensimmäinen viritystila ( S1 ). Molemmat tilat ovat singlettitiloja.Malline:Efn Viritystila lopulta sammuu molekyylitörmäyksen seurauksena yhtälön (1) mukaisesti:

(1)S1+QkqS0+Q

Tässä Q on törmäyskappale kuten reaktorin seinä tai liuotinmolekyyli, kq on viritystilan sammumisen nopeusvakio ja se sisältää erityyppiset fotofysikaaliset molekyylin eri energiatilojen välillä tapahtuvat elektronisiirtymät. Yhtälön (1) nopeuslaiksi voidaan kirjoittaa:

(2)R=kq[S1][Q]

Viritystilan elinaika on lyhyt, joten siihen voidaan soveltaa vakiotilaoletusta:

(3)d[S1]dt=kabs[S0]kF[S1]kIC[S1]kISCs[S1]kq[S1][Q]=0

Tässä kabs on absorption, kF on virittyneen singlettitilan sammumisen, kIC on singlettitilalta perustilalle tapahtuvan siirtymisen, ja kISCs singlettitilalta triplettitilalle tapahtuvan siirtymisen nopeusvakio.

Määritelmän mukaan singlettitilan sammumiseen liittyvä fluoresenssin keskimääräinen elinaika on

(4)1τF=kF+kIC+kISCs+kq[Q]

Sijoittamalla yhtälö (4) yhtälöön (3) voidaan viritystilan konsentraatioksi saada: [S1]=kabs[S0]τF. Kun lisäksi fluoresenssin voimakkuus, IF, riippuu fluoresenssin nopeudesta: IF=kF[S1]=kabs[S0]kFτF, saadaan fluoresenssin kvanttisuhteelle, ΦF, (engl. quantum yield) yhtälö (5).

(5)kFτF=kFkF+kIC+kISCs+kq[Q]=ΦF

Yhtälössä oleva osamäärä tarkoittaa fluoresenssin nopeusvakio jaettuna kaikkien nopeusvakioiden summalla, jotka johtavat viritystilan sammumiseen. Tätä vastaava tapahtuma on todettavissa rinnakkaisissa alkeisreaktioissa. Fluoresenssin kvanttisuhde on määritelty myös olemaan: fluoresenssina emittoituneiden fotonien lukumäärä jaettuna absorboituneiden fotonien lukumäärällä. Kun yhtälöön (5) sijoitetaan em. IF ja otetaan yhtälöstä puolittain käänteisarvot, saadaan:[1]

(6)1IF=1kabs[S0](1+kIC+kISCskF)+kq[Q]kabs[S0]kF

Fluoresenssimittauksen analyysi

Mittauspistejoukkoon on sovitettu suoran yhtälö. Pistejoukon suorankaltaisuus kuvastaa tässä yhtälön (7) tarkkuutta. Pistejoukon lineaarisuudesta poikkeava sijoittuminen viittaisi siihen, että jokin muu säteilyksetön energian siirtotapahtuma olisi myös läsnä.

Määritettäessä fluoresenssin sammumista, mitataan fluoresenssin voimakkuus sammuttajan konsentraation funktiona, [Q]. Lopuksi mittauksia suhteutetaan tilanteeseen, jossa sammuttajaa ei ole läsnä,IF0 yhtälön (7), jota sanotaan Stern–Volmer-yhtälöksi, mukaisesti.

(7)IF0IF=1+kqkF[Q]

Piirrettäessä fluoresenssien voimakkuuksien suhde sammuttajan konsentraation funktiona, on seurauksena kuvaajalla suora, jonka kulmakerroin on kqkF. Tätä kutsutaan Stern–Volmer-kuvaajaksi. Siinä sovitettu suora on pakotettu leikkaamaan y-akseli pisteessä y=1.[1]

Fluoresenssin keskimääräinen elinaika

Viritysvalo voidaan nykyään aikaansaada pulssilaserilla, jonka fotonipulssin ajallinen pituus voi olla muutama femtosekunti. Tämä aika on paljon lyhyempi kuin virittyneen molekyylin singlettitilan elinaika. Lyhytaikainen virityspulssi myös mahdollistaa yhtälössä (3) olevan virittymisen kinetiikan huomiotta jättämisen, joten differentiaaliyhtälö singlettitilan konsentraation muuttumiselle on seuraava:

(8)d[S1]dt=kF[S1]kIC[S1]kISCs[S1]kq[Q][S1]=[S1]τF

Integroimalla tästä saadaan 1. kertaluvun eksponenttimuotoinen yhtälö:

(9)[S1]=[S1]0etτF

Edellä on todettu, että IF=kF[S1], joten yhtälön (9) mukaan fluoresenssin voimakkuus vaimenee eksponentiaalisesti keskimääräisen elinajan määräämällä kinetiikalla. Tyypillisesti kFkIC ja kFkISCs, joten voidaan approksimoida:

(9)limkFkIC,kISCsτF=1kF+kq[Q]

Kun näissä olosuhteissa mitattu fluoresenssin keskimääräinen elinaika yhdistettynä Stern–Volmer-kuvaajan tulokseen, voidaan määrittää kF ja kq. Tämä tapahtuu ottamalla yhtälöstä (9) käänteisarvot puolittain ja piirtämällä kuvaaja, jossa y-akseli on 1τF ja x-akseli on [Q]. Leikkauspisteestä y-akselilla saadaan kF ja sovitetun suoran kulmakertoimesta kq.[1]

Huomautuksia

Malline:Huomiolista

Katso myös

Malline:Div col

Malline:Div col end

Lähteet

Malline:Viitteet

  1. 1,0 1,1 1,2 1,3 Thomas Engel ja Philip Reid, Thermodynamics, Statistical Thermodynamics and Kinetics, (2006), s. 514, Pearson, Malline:ISBN