Goldbachin heikko konjektuuri

testwikistä
Versio hetkellä 13. marraskuuta 2022 kello 13.09 – tehnyt imported>InternetArchiveBot (Pelastettu 1 lähde(ttä) ja merkitty 0 kuolleeksi.) #IABot (v2.0.9.2)
(ero) ← Vanhempi versio | Nykyinen versio (ero) | Uudempi versio → (ero)
Siirry navigaatioon Siirry hakuun

Malline:LähteetönGoldbachin heikko konjektuuri on matematiikan avoin ongelma, jonka mukaan jokainen lukua 7 suurempi pariton kokonaisluku n on kolmen alkuluvun summa. Otaksuma tunnetaan myös nimillä pariton Goldbachin konjektuuri ja kolmen alkuluvun ongelma.

Edistyminen

  • 1937: Vinogradov todisti Siegelin–Walfiszin lauseen avulla otaksuman pätevän kaikille riittävän suurille luvuille ilman yleistettyä Riemannin hypoteesiä.[2]
  • 1956: Vinogradovin opiskelija K. Borozdkin todisti, että väite pätee kun n>ee16,0383315.
  • 1997: Deshouillers, Effinger, te Riele ja Zinoviev todistivat, että yleistetystä Riemannin hypoteesista seuraa Goldbachin heikko otaksuma.[3]
  • 2002: Liu Ming-Chit ja Wang Tian-Ze onnistuivat todistamaan, että väite on voimassa kun ne3100. Raja on vielä liian suuri tietokoneiden läpikäytäväksi, mutta jokainen yksittäinen erikoistapaus on suuruusluokkansa puolesta tarkistettavissa.[4]
  • Toukokuuhun 2012 mennessä Goldbachin heikko konjektuuri on todistettu lukuun 5,906981029 asti.[5]
  • Vuosina 2012, 2013 ja 2014 H. A. Helfgott lähetti Arxiviin kolme artikkelia, jotka todistivat otaksuman.[5][6][7][8][9] Todistus perustuu niin sanottuun major- ja minorkaariestimointiin, joka on kehitetty Hardyn–Littlewoodin ympyrämenetelmästä sekä otaksuman laskennalliseen varmistamiseen lukua 1027 pienemmille ja seitsemää suuremmille parittomille luvuille. Tämän laskennallisen osuuden hän teki yhdessä David Plattin kanssa[10].

Parittomien lukujen esittäminen useamman alkuluvun summana

  • Vuonna 1995 Olivier Ramaré osoitti, että jokainen parillinen luku n4 on korkeintaan kuuden alkuluvun summa. Tästä seuraa, että jokainen pariton luku n5 on korkeintaan seitsemän alkuluvun summa.[11]
  • Vuonna 1995 Leszek Kaniecki osoitti, että jokainen pariton kokonaisluku on korkeintaan viiden alkuluvun summa, kunhan Riemannin hypoteesi on voimassa. [12]
  • 2012: Terence Tao todisti, että jokainen pariton positiivinen kokonaisluku on korkeintaan viiden alkuluvun summa.[13]

Lähteet

Malline:Viitteet

Malline:Tynkä/Matematiikka

  1. G. H. Hardy, J. E. Littlewood, "Some problems of `partitio numerorum' : III: on the expression of a number as a sum of primes," Acta Math., 44 (1923) 1–70. Reprinted in "Collected Papers of G. H. Hardy," Vol. I, pp. 561–630, Clarendon Press, Oxford, 1966.
  2. I. M. Vinogradov, "Representation of an odd number as a sum of three primes" Dokl. Akad. Nauk SSSR, 16 (1937) 179–195. Russian
  3. J. M. Deshouillers, G. Effinger, H. te Riele, D. Zinoviev, "A complete Vinogradov 3-primes theorem under the Riemann hypothesis," ERA Amer. Math. Soc., 3 (1997) 94–104.
  4. Liu Ming-Chit, Wang Tian-Ze "On the Vinogradov bound in the three primes Goldbach conjecture.", Acta Arith., 105, No.2, 133–175 (2002)
  5. 5,0 5,1 H. A. Helfgott, Minor Arcs for Goldbach's problem, http://arxiv.org/abs/1205.5252
  6. Artem Kaznatcheev, PRIME NUMBERS: THE 271 YEAR OLD PUZZLE RESOLVED http://www.truthiscool.com/prime-numbers-the-271-year-old-puzzle-resolved Malline:Wayback
  7. Terence Taon Google+-tili https://plus.google.com/u/0/114134834346472219368/posts/8qpSYNZFbzC
  8. H. A. Helfgott, Major arcs for Goldbach's theorem, http://arxiv.org/pdf/1305.2897v1
  9. H. A. Helfgott, The ternary Goldbach conjecture is true http://arxiv.org/abs/1312.7748
  10. H. A. Helfgott, D. Platt, Numerical Verification of the Ternary Goldbach Conjecture up to 8.875e30 http://arxiv.org/abs/1305.3062
  11. Olivier Ramaré, "On Šnirel'man's constant", Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol. 22, no 4, 1995, p. 645–706
  12. Kaniecki, Leszek (1995). "On Šnirelman's constant under the Riemann hypothesis". Acta Arithmetica 4. pp. 361–374
  13. Terence Tao, Every odd number greater than 1 is the sum of at most five primes, http://arxiv.org/pdf/1201.6656v4