Ero sivun ”Pappoksen lause” versioiden välillä
Siirry navigaatioon
Siirry hakuun
imported>Addbot |
(ei mitään eroa)
|
Nykyinen versio 9. maaliskuuta 2013 kello 10.40
Pappoksen lause on geometrinen tulos, joka kuuluu seuraavasti: Olkoot l ja m suoria, A, B ja C suoralla l ja D, E ja F suoralla m. Olkoon , , . Tällöin G, H ja I ovat samalla suoralla. Pappuksen lause voidaan todistaa esimerkiksi projektiivisen geometrian keinoin tai Menelaoksen lauseen avulla, mikäli mitkään kaksi suorista AB, CD ja EF eivät ole samalla suoralla.
Lauseen duaalinen muoto kuuluu seuraavasti: Leikatkoon suorat A, B ja C samassa pisteessä sekä a,b,c samassa pisteessä. Tällöin suorat x,y,z, jotka kulkevat pisteiden A∩b ja a∩B, A∩c ja a∩C, B∩c ja b∩C kautta tässä järjestyksessä, leikkaavat samassa pisteessä.
Pascalin lause on Pappoksen lauseen yleistys, minkä Blaise Pascal keksi 16-vuotiaana. Malline:Tynkä/Matematiikka