MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "compare": {
        "fromid": 1,
        "fromrevid": 1,
        "fromns": 0,
        "fromtitle": "Etusivu",
        "toid": 2,
        "torevid": 2,
        "tons": 0,
        "totitle": "Algebrallinen luku",
        "*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">Rivi 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">Rivi 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>&lt;<del class=\"diffchange diffchange-inline\">strong</del>&gt;<del class=\"diffchange diffchange-inline\">MediaWiki </del>on <del class=\"diffchange diffchange-inline\">onnistuneesti asennettu</del>.&lt;/<del class=\"diffchange diffchange-inline\">strong</del>&gt;</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''Algebrallinen luku''' tarkoittaa sellaista [[reaaliluku|reaali-]] tai [[kompleksiluku]]a </ins>&lt;<ins class=\"diffchange diffchange-inline\">math</ins>&gt;<ins class=\"diffchange diffchange-inline\">a&lt;/math&gt;, joka on [[kokonaisluku]]kertoimisen [[polynomi]]n &lt;math&gt;P(x)&lt;/math&gt; [[nollakohta]] eli toteuttaa yht\u00e4l\u00f6n &lt;math&gt;P(a) = 0&lt;/math&gt;. Polynomin</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;P(x)=a_n x^n + a_{n-1} x^{n-1} + \\dotsb + a_1 x + a_0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Aste (polynomi)|aste]] tulee olla [[positiivinen luku|positiivinen]], jolloin v\u00e4hint\u00e4\u00e4n yksi kertoimista &lt;math&gt;a_k\\in \\Z, k=1,\\dotsc,n &lt;/math&gt; poikkeaa nollasta. Jos vain &lt;math&gt;a_0&lt;/math&gt; poikkeaa nollasta, on kyseess\u00e4 [[vakiofunktio]], joka ei t\u00e4yt\u00e4 edell\u00e4 mainittua ehtoa. Yleens\u00e4 algebrallinen luku </ins>on <ins class=\"diffchange diffchange-inline\">kompleksinen, mutta tietyill\u00e4 ehdoilla se voi olla my\u00f6s reaalinen, rationaalinen tai kokonainen</ins>.&lt;<ins class=\"diffchange diffchange-inline\">ref name=ww5</ins>/&gt;</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Lis\u00e4tietoja wiki-ohjelmiston k\u00e4yt\u00f6st\u00e4 </del>on <del class=\"diffchange diffchange-inline\">[https:</del>/<del class=\"diffchange diffchange-inline\">/www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special:MyLanguage/Help:Contents k\u00e4ytt\u00f6oppaassa].</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Polynomia, jonka korkeimman asteen termin kerroin </ins>on <ins class=\"diffchange diffchange-inline\">&lt;math&gt;1&lt;</ins>/<ins class=\"diffchange diffchange-inline\">math&gt; ja muut kertoimet ovat kokonaislukuja, kutsutaan '''p\u00e4\u00e4polynomiksi'''</ins>. <ins class=\"diffchange diffchange-inline\">P\u00e4\u00e4polynomin nollakohtaa kutsutaan '''algebralliseksi kokonaisluvuksi''' tai '''kokonaiseksi algebralliseksi luvuksi'''</ins>.<ins class=\"diffchange diffchange-inline\">&lt;ref name=ww7</ins>/<ins class=\"diffchange diffchange-inline\">&gt;&lt;ref name=mj</ins>/<ins class=\"diffchange diffchange-inline\">&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>==<del class=\"diffchange diffchange-inline\">= Aloittaminen ===</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">M\u00e4\u00e4ritelm\u00e4st\u00e4 seuraa [[algebran peruslause]]en mukaisesti, ett\u00e4 polynomin nollakohdan &lt;math&gt;a \\in \\Z&lt;/math&gt; avulla voidaan p\u00e4\u00e4tell\u00e4 sen yhden tekij\u00e4n olevan binomi &lt;math&gt;x - a&lt;/math&gt;. Algebralliseen lukuun voidaan liitt\u00e4\u00e4 useita polynomeja, joissa on t\u00e4m\u00e4 tekij\u00e4. Sit\u00e4 polynomia, jonka aste on matalin, kutsutaan '''minimaalipolynomiksi'''. Minimaalipolynomin '''aste''' on samalla '''algebrallisen luvun aste'''.&lt;ref name</ins>=<ins class=\"diffchange diffchange-inline\">mj/&gt;&lt;ref name</ins>=<ins class=\"diffchange diffchange-inline\">ww6/&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https://www.mediawiki.org/wiki/Special:MyLanguage/Manual:Configuration_settings Asetusten teko-ohjeita]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Voidaan todistaa</ins>, <ins class=\"diffchange diffchange-inline\">ett\u00e4 algebrallisen luvun minimaalipolynomi on yksik\u00e4sitteinen ja ett\u00e4 minimaalipolynomi on aina tekij\u00e4n\u00e4 muissa luvun polynomeissa</ins>. <ins class=\"diffchange diffchange-inline\">Lis\u00e4ksi minimipolynomi on aina jaoton</ins>. <ins class=\"diffchange diffchange-inline\">Samaan polynomiin liittyv\u00e4t algebralliset luvut ovat toistensa '''konjugaatteja'''</ins>.<ins class=\"diffchange diffchange-inline\">&lt;ref name=mj3</ins>/<ins class=\"diffchange diffchange-inline\">&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https://www.mediawiki.org/wiki/Special:MyLanguage/Manual:FAQ MediaWikin FAQ]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https://lists.wikimedia.org/postorius/lists/mediawiki-announce.lists.wikimedia.org/ S\u00e4hk\u00f6postilista</del>, <del class=\"diffchange diffchange-inline\">jolla tiedotetaan MediaWikin uusista versioista]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https://www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special:MyLanguage/Localisation#Translation_resources K\u00e4\u00e4nn\u00e4 MediaWiki\u00e4 kielellesi]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https://www</del>.<del class=\"diffchange diffchange-inline\">mediawiki.org/wiki/Special:MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Manual:Combating_spam Katso, kuinka torjua sp\u00e4mmi\u00e4 wikiss\u00e4si]</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>=== <del class=\"diffchange diffchange-inline\">Asetukset </del>===</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>==<ins class=\"diffchange diffchange-inline\">Johdanto</ins>==</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>==<ins class=\"diffchange diffchange-inline\">=Merkint\u00e4===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Algebrallisten lukujen joukkoa merkit\u00e4\u00e4n joskus &lt;math&gt;\\mathbb{A}&lt;/math&gt; tai &lt;math&gt;\\overline{\\Q}&lt;/math&gt;. Niit\u00e4 kompleksilukuja, jotka eiv\u00e4t ole algebrallisia lukuja eli &lt;math&gt;\\Complex \\smallsetminus \\mathbb{A}&lt;/math&gt;, kutsutaan [[transkendenttiluku|transkendenttiluvuiksi]].&lt;ref name=ww5/&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Tarkista, ett\u00e4 alla olevat taivutusmuodot </del>ovat <del class=\"diffchange diffchange-inline\">oikein</del>. <del class=\"diffchange diffchange-inline\">Jos eiv\u00e4t</del>, <del class=\"diffchange diffchange-inline\">tee tarvittavat muutokset tiedostoon LocalSettings</del>.<del class=\"diffchange diffchange-inline\">php seuraavasti</del>:</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Algebrallinen yht\u00e4l\u00f6===</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> $wgGrammarForms</del>[<del class=\"diffchange diffchange-inline\">'fi'</del>]<del class=\"diffchange diffchange-inline\">['genitive'</del>]<del class=\"diffchange diffchange-inline\">['</del>{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}<del class=\"diffchange diffchange-inline\">'] </del>= <del class=\"diffchange diffchange-inline\">'</del>...<del class=\"diffchange diffchange-inline\">';</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''Algebrallisen yht\u00e4l\u00f6n''' juuret </ins>ovat <ins class=\"diffchange diffchange-inline\">''algebrallisia lukuja''</ins>. <ins class=\"diffchange diffchange-inline\">Algebrallinen yht\u00e4l\u00f6 muodostetaan laskettaessa polynomin nollakohtia </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> $wgGrammarForms['fi']['partitive']['</del>{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}<del class=\"diffchange diffchange-inline\">'] </del>= <del class=\"diffchange diffchange-inline\">'</del>...<del class=\"diffchange diffchange-inline\">';</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;P(x) = 0&lt;/math&gt; </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> $wgGrammarForms</del>[<del class=\"diffchange diffchange-inline\">'fi'</del>]<del class=\"diffchange diffchange-inline\">['elative'</del>]<del class=\"diffchange diffchange-inline\">['</del>{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}<del class=\"diffchange diffchange-inline\">'</del>] = <del class=\"diffchange diffchange-inline\">'</del>...<del class=\"diffchange diffchange-inline\">';</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">eli </ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>\u00a0 <del class=\"diffchange diffchange-inline\">$wgGrammarForms[</del>'<del class=\"diffchange diffchange-inline\">fi</del>'<del class=\"diffchange diffchange-inline\">][</del>'<del class=\"diffchange diffchange-inline\">inessive</del>']<del class=\"diffchange diffchange-inline\">['</del>{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}<del class=\"diffchange diffchange-inline\">'] = '</del>...<del class=\"diffchange diffchange-inline\">';</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;a_n x^n + a_{n-1} x^{n-1} + \\dotsb + a_1 x + a_0 = 0,&lt;/math&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> $wgGrammarForms</del>[<del class=\"diffchange diffchange-inline\">'fi'</del>][<del class=\"diffchange diffchange-inline\">'illative'</del>][<del class=\"diffchange diffchange-inline\">'</del>{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}<del class=\"diffchange diffchange-inline\">'] </del>= <del class=\"diffchange diffchange-inline\">'</del>...<del class=\"diffchange diffchange-inline\">';</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">miss\u00e4 &lt;math&gt;a_k\\in \\Z, k=0,\\dotsc</ins>,<ins class=\"diffchange diffchange-inline\">n</ins>.<ins class=\"diffchange diffchange-inline\">&lt;/math&gt; Joskus yht\u00e4l\u00f6n ensimm\u00e4isen termin kerroin &lt;math&gt;a_0 (\\ne 0)&lt;/math&gt; jaetaan molemmista puolista pois, jolloin saadaan ''p\u00e4\u00e4polynomin yht\u00e4l\u00f6''</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Taivutusmuodot: </del>{{<del class=\"diffchange diffchange-inline\">GRAMMAR</del>:<del class=\"diffchange diffchange-inline\">genitive</del>|{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}}} <del class=\"diffchange diffchange-inline\">(y\u00f6n) \u2013 </del>{{<del class=\"diffchange diffchange-inline\">GRAMMAR</del>:<del class=\"diffchange diffchange-inline\">partitive</del>|{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}}} <del class=\"diffchange diffchange-inline\">(y\u00f6t\u00e4) \u2013 </del>{{<del class=\"diffchange diffchange-inline\">GRAMMAR</del>:<del class=\"diffchange diffchange-inline\">elative</del>|{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}}} <del class=\"diffchange diffchange-inline\">(y\u00f6st\u00e4) \u2013 </del>{{<del class=\"diffchange diffchange-inline\">GRAMMAR</del>:<del class=\"diffchange diffchange-inline\">inessive</del>|{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}}} <del class=\"diffchange diffchange-inline\">(y\u00f6ss\u00e4) </del>\u2013 {{<del class=\"diffchange diffchange-inline\">GRAMMAR</del>:<del class=\"diffchange diffchange-inline\">illative|</del>{{<del class=\"diffchange diffchange-inline\">SITENAME</del>}}}} <del class=\"diffchange diffchange-inline\">(y\u00f6h\u00f6n)</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\">&lt;math&gt;x^n + b_{n-1} x^{n-1} + \\dotsb + b_1 x + b_0 = 0,&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">ja jonka kertoimet ovat [</ins>[<ins class=\"diffchange diffchange-inline\">rationaaliluku</ins>]]<ins class=\"diffchange diffchange-inline\">ja &lt;math&gt;b_k = \\frac</ins>{<ins class=\"diffchange diffchange-inline\">a_k}</ins>{<ins class=\"diffchange diffchange-inline\">a_n</ins>} <ins class=\"diffchange diffchange-inline\">\\in \\Z, k=0,\\dotsc,n-1.&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Koska yht\u00e4l\u00f6n molemmat puolet voi kertoa luvulla &lt;math&gt;c \\in \\Z ( \\ne 0)&lt;/math&gt;, voidaan algebrallisen yht\u00e4l\u00f6n kertoimiksi sallia my\u00f6s rationaaliluvut.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Esimerkkej\u00e4 algebrallisista yht\u00e4l\u00f6ist\u00e4 ja -luvuista===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Luvun voi todeta algebralliseksi, jos keksii sille rationaalilukukertoimisen polynomiyht\u00e4l\u00f6n, jonka juuri luku on. Luvun asteen voi p\u00e4\u00e4tell\u00e4 retusoimalla polynomin tekij\u00f6it\u00e4. Seuraavassa on joitakin esimerkkej\u00e4 lukuisasta soveltamiskent\u00e4st\u00e4.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">====Ensimm\u00e4isen asteen luvut====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Jos polynomi &lt;math&gt;P(x)= ax - b&lt;/math&gt; kerroin &lt;math&gt;a = 1&lt;/math&gt;, saadaan p\u00e4\u00e4polynomi. T\u00e4m\u00e4n polynomin algebralliset luvut ovat kokonaislukuja, joiden aste on 1. T\u00e4ll\u00f6in voidaan merkit\u00e4 &lt;math&gt; \\Z \\subset \\mathbb{A</ins>}<ins class=\"diffchange diffchange-inline\">&lt;/math&gt;. Kaikki rationaaliluvut ovat algebrallisia lukuja, jotka toteuttavat 1. asteen polynomiyht\u00e4l\u00f6n </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;ax - b =0 \\Leftrightarrow x </ins>= <ins class=\"diffchange diffchange-inline\">\\frac {b}{a}</ins>.<ins class=\"diffchange diffchange-inline\">&lt;/math&gt; </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">T\u00e4st\u00e4 n\u00e4hd\u00e4\u00e4n, ett\u00e4 &lt;math&gt; \\Q \\subset \\mathbb{A}&lt;/math&gt;</ins>.<ins class=\"diffchange diffchange-inline\">&lt;ref name=mj/&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">====Toisen asteen luvut====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Erilaisia esimerkkej\u00e4:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Kokonaislukujen juuriluvut &lt;math&gt;\\sqrt{c} \\text{\u00a0 ja } -\\sqrt{c}&lt;/math&gt; ovat p\u00e4\u00e4polynomin &lt;math&gt;P(x)= x^2-c&lt;/math&gt; nollakohtina toisen asteen algebrallisia kokonaislukuja, jotka ovat lis\u00e4ksi toistensa konjugaatteja</ins>. \u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Irrationaalinen &lt;math&gt;\\frac{1}</ins>{<ins class=\"diffchange diffchange-inline\">\\sqrt</ins>{<ins class=\"diffchange diffchange-inline\">2</ins>}}<ins class=\"diffchange diffchange-inline\">&lt;/math&gt; on toista astetta oleva algebrallinen luku, sill\u00e4 se on algebrallisen yht\u00e4l\u00f6n &lt;math&gt;2x^2-1</ins>=<ins class=\"diffchange diffchange-inline\">0&lt;/math&gt; juuri</ins>. \u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Kokonaislukukertoimisen toisen asteen polynomiyht\u00e4l\u00f6n &lt;math&gt;ax^2 + bx + c&lt;/math&gt; kaikki ratkaisut ovat algebrallisia lukuja</ins>. <ins class=\"diffchange diffchange-inline\">Joukossa on my\u00f6s paljon erilaisia irrationaaliratkaisuja</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [</ins>[<ins class=\"diffchange diffchange-inline\">Kultainen leikkaus</ins>]] <ins class=\"diffchange diffchange-inline\">on luku </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;\\phi=\\frac{1}</ins>{<ins class=\"diffchange diffchange-inline\">2}(1+\\sqrt</ins>{<ins class=\"diffchange diffchange-inline\">5</ins>}<ins class=\"diffchange diffchange-inline\">)=1{,</ins>}<ins class=\"diffchange diffchange-inline\">61803\\dots,&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">joka on polynomin &lt;math&gt;x^2+x-1=0\\,&lt;/math&gt; nollakohta.&lt;ref name=ww5/&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Kompleksiluku|Imaginaariyksikk\u00f6]</ins>] <ins class=\"diffchange diffchange-inline\">&lt;math&gt;i&lt;/math&gt; on toista astetta oleva algebrallinen luku, sill\u00e4 se toteuttaa yht\u00e4l\u00f6n &lt;math&gt;x^2+1</ins>=<ins class=\"diffchange diffchange-inline\">0&lt;/math&gt;</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">====Muita algebrallisia lukuja====</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Kaikki luvut, jotka saadaan polynomin kertoimista peruslaskutoimituksilla ja n-asteisella juurenotolla, ovat algebrallisia lukuja</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Trigonometriset funktiot]], joiden argumenttina olevalla &lt;math&gt;\\pi&lt;/math&gt;:ll\u00e4 on [[rationaaliluku|rationaalikerroin]], ovat algebrallisia lukuja</ins>. <ins class=\"diffchange diffchange-inline\">Esimerkiksi jokainen algebrallinen luku </ins> <ins class=\"diffchange diffchange-inline\">&lt;math&gt;\\cos (\\pi/7)&lt;/math&gt;, &lt;math&gt;\\cos (3\\pi/7)&lt;/math&gt; ja &lt;math&gt;\\cos (5\\pi/7)&lt;/math&gt; on minimaalipolynomin &lt;math&gt;8x^3 - 4x^2 - 4x + 1 = 0&lt;/math&gt; nollakohta. T\u00e4m\u00e4 tekee luvuista toistensa kolmannen asteen </ins>''<ins class=\"diffchange diffchange-inline\">konjugaatteja</ins>''<ins class=\"diffchange diffchange-inline\">.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*My\u00f6s luvut &lt;math&gt;\\tan (3\\pi/16)&lt;/math&gt;, &lt;math&gt;\\tan (7\\pi/16)&lt;/math&gt;, &lt;math&gt;\\tan (11\\pi/16)&lt;/math&gt; ja &lt;math&gt;\\tan (15\\pi/16)&lt;/math&gt; ovat minimaali- ja p\u00e4\u00e4polynomin &lt;math&gt;x^4 - 4x^3 - 6x^2 + 4x + 1&lt;/math&gt; nollakohtia ja ovat toistensa nelj\u00e4nnen asteen konjugaatteja ja algebrallisia kokonaislukuja.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Algebrallisten lukujen yleisi\u00e4 ominaisuuksia==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Tiedosto:Algebraic number in the complex plane.png|pienoiskuva|Algebrallisten lukujen sijoittuminen kompleksitasoon.</ins>]<ins class=\"diffchange diffchange-inline\">]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Algebralliset luvut===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Voidaan my\u00f6s todistaa, ett\u00e4 kompleksiluku &lt;math&gt;a + bi&lt;/math&gt; on toisen asteen</ins>{{<ins class=\"diffchange diffchange-inline\">L\u00e4hde|Niink\u00f6?|26. kes\u00e4kuuta 2019|vuosi=2019</ins>}} <ins class=\"diffchange diffchange-inline\">algebrallinen luku, jos luvut &lt;math&gt;a&lt;/math&gt; ja &lt;math&gt;b&lt;/math&gt; ovat algebrallisia</ins>. <ins class=\"diffchange diffchange-inline\">Silloin on my\u00f6s liittoluku &lt;math&gt;a - bi&lt;/math&gt; algebrallinen</ins>.<ins class=\"diffchange diffchange-inline\">&lt;ref name=ww5/&gt;&lt;ref name=mj/&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Tiheys===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Algebrallisten lukujen joukko on [[tihe\u00e4 joukko|tihe\u00e4]], jolloin kahden mielivaltaisen algebrallisen luvun v\u00e4list\u00e4 l\u00f6ytyy aina kolmas algebrallinen luku riippumatta kuinka l\u00e4hell\u00e4 ensin mainitut kaksi lukua olivat</ins>.<ins class=\"diffchange diffchange-inline\">&lt;ref name=mj2/&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Algebrallisten lukujen mahtavuus===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Algebrallisten luvut ovat [</ins>[<ins class=\"diffchange diffchange-inline\">numeroituva joukko|numeroituvasti \u00e4\u00e4ret\u00f6n]</ins>] <ins class=\"diffchange diffchange-inline\">joukko, jonka </ins>[<ins class=\"diffchange diffchange-inline\">[mahtavuus]</ins>] <ins class=\"diffchange diffchange-inline\">on siis &lt;math&gt;\\aleph_0&lt;/math&gt; &lt;ref name=ww2/&gt;. Transkendenttisten lukujen mahtavuus on kuitenkin </ins>[<ins class=\"diffchange diffchange-inline\">[ylinumeroituva joukko|ylinumeroituvasti \u00e4\u00e4ret\u00f6n]].&lt;ref name=mj2/&gt;&lt;ref name=brown/&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==\u00a0 L\u00e4hteet\u00a0 ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*</ins>{{<ins class=\"diffchange diffchange-inline\">Kirjaviite | Tekij\u00e4 =Fuchs, Walter R. | Nimeke =Matematiikka | Suomentaja =Mattila, Pekka | Vuosi =1968 | Julkaisupaikka =L\u00e4nsi-Saksa | Julkaisija =Kirjayhtym\u00e4 | Viitattu = </ins>}}</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*{{Kirjaviite | Tekij\u00e4 =Majaranta, Leo | Nimeke =Algebrallisista ja transkendenttisista luvuista | Vuosi =2011 | Selite =(Pro Gradu-tutkielma) | Julkaisupaikka =Tampere | Julkaisija =Tampereen yliopisto | Tunniste = | Isbn = | www </ins>=<ins class=\"diffchange diffchange-inline\">https://trepo</ins>.<ins class=\"diffchange diffchange-inline\">tuni</ins>.<ins class=\"diffchange diffchange-inline\">fi/bitstream/handle/10024/82679/gradu05183</ins>.<ins class=\"diffchange diffchange-inline\">pdf?sequence=1&amp;isAllowed=y | www-teksti = | Tiedostomuoto =pdf | Viitattu = 2.9.2024 }}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===\u00a0 Viitteet\u00a0 ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{viitteet|sarakkeet|viitteet=</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=brown&gt;</ins>{{<ins class=\"diffchange diffchange-inline\">Verkkoviite | Osoite =http</ins>:<ins class=\"diffchange diffchange-inline\">//www.math.brown.edu/~res/MFS/handout8.pdf | Nimeke =Countable and Uncountable Sets | Tekij\u00e4 =Schwartz, Rich | Tiedostomuoto =pdf | Selite =luentomoniste | Ajankohta =2007 | Julkaisupaikka =Providence | Julkaisija =Brown University | Viitattu = </ins>| <ins class=\"diffchange diffchange-inline\">Kieli =</ins>{{<ins class=\"diffchange diffchange-inline\">en</ins>}} }}<ins class=\"diffchange diffchange-inline\">&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=ww2&gt;</ins>{{<ins class=\"diffchange diffchange-inline\">Verkkoviite | Osoite =http</ins>:<ins class=\"diffchange diffchange-inline\">//mathworld.wolfram.com/Aleph-0.html | Nimeke =Aleph-0 | Tekij\u00e4 =Weisstein, Eric W. | Selite =Math World \u2013 A Wolfram Web Resource |\u00a0 Julkaisija =Wolfram Research </ins>| <ins class=\"diffchange diffchange-inline\">Kieli =</ins>{{<ins class=\"diffchange diffchange-inline\">en</ins>}} }}<ins class=\"diffchange diffchange-inline\">&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=ww5&gt;</ins>{{<ins class=\"diffchange diffchange-inline\">Verkkoviite | Osoite =http</ins>:<ins class=\"diffchange diffchange-inline\">//mathworld.wolfram.com/AlgebraicNumber.html | Nimeke =Algebraic Number </ins>| <ins class=\"diffchange diffchange-inline\">Tekij\u00e4 =Weisstein, Eric W. | Selite =Math World \u2013 A Wolfram Web Resource |\u00a0 Julkaisija =Wolfram Research | Kieli =</ins>{{<ins class=\"diffchange diffchange-inline\">en</ins>}} }}<ins class=\"diffchange diffchange-inline\">&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=ww6&gt;</ins>{{<ins class=\"diffchange diffchange-inline\">Verkkoviite | Osoite =http</ins>:<ins class=\"diffchange diffchange-inline\">//mathworld.wolfram.com/AlgebraicNumberMinimalPolynomial.html | Nimeke =Algebraic Number Minimal Polynomial | Tekij\u00e4 =Barile, Margherita &amp; Rowland, Todd &amp; Weisstein, Eric W. </ins>| <ins class=\"diffchange diffchange-inline\">Selite =Math World \u2013 A Wolfram Web Resource |\u00a0 Julkaisija =Wolfram Research | Kieli =</ins>{{<ins class=\"diffchange diffchange-inline\">en</ins>}} }}<ins class=\"diffchange diffchange-inline\">&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=ww7&gt;{{Verkkoviite | Osoite =http://mathworld.wolfram.com/AlgebraicInteger.html | Nimeke =Algebraic Integer | Tekij\u00e4 =Weisstein, Eric W. | Selite =Math World </ins>\u2013 <ins class=\"diffchange diffchange-inline\">A Wolfram Web Resource |\u00a0 Julkaisija =Wolfram Research | Kieli =</ins>{{<ins class=\"diffchange diffchange-inline\">en}} }}&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=mj&gt;Majaranta, Leo</ins>: <ins class=\"diffchange diffchange-inline\">Algebrallisista ja transkendenttisista luvuista, s. 7\u20139&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=mj2&gt;Majaranta, Leo, s. 12\u201313&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*&lt;ref name=mj3&gt;Majaranta, Leo, s. 13\u201316&lt;/ref&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Aiheesta muualla==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>{{<ins class=\"diffchange diffchange-inline\">commonscat</ins>}}</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*Pahikkala, J.: [http://www.wakkanet.fi/~pahio/alg.luvut.html Kirjoituksia matematiikasta] {{Wayback|1=http://www.wakkanet.fi/~pahio/alg.luvut.html |p\u00e4iv\u00e4ys=20120208025949 </ins>}}</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*Halko, Aapo: [http://solmu.math.helsinki</ins>.<ins class=\"diffchange diffchange-inline\">fi/1998/3/halko/ Joukko-oppia reaaliluvuilla]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Lukujoukkoja}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Luokka:Algebra]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Luokka:Lukuavaruudet]]</ins></div></td></tr>\n"
    }
}